Biology:Heteroreceptor

From HandWiki

A heteroreceptor is a receptor regulating the synthesis and/or the release of mediators other than its own ligand.[1]

Heteroreceptors respond to neurotransmitters, neuromodulators, or neurohormones released from adjacent neurons or cells; they are opposite to autoreceptors, which are sensitive only to neurotransmitters or hormones released by the cell in whose wall they are embedded.[2]

Examples

  • Norepinephrine can influence the release of acetylcholine from parasympathetic neurons by acting on α2 adrenergic (α2A, α2B, and α2C) heteroreceptors.[3]
  • Acetylcholine can influence the release of norepinephrine from sympathetic neurons by acting on muscarinic-2 and muscarinic-4 heteroreceptors.
  • CB1 negatively modulates the release of GABA[4][5] and glutamate,[6] playing a crucial role in maintaining a homeostasis between excitatory and inhibitory transmission.
  • Glutamate released from an excitatory neuron escapes from the synaptic cleft and preferentially affects mGluR III receptors on the presynaptic terminals of interneurons. Glutamate spillover leads to inhibition of GABA release, modulating GABAergic transmission.[7][8]

See also

References

  1. Millan, M. J.; Lejeune, F.; Gobert, A. (2000). "Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: Relevance to the actions of antidepressant agents". Journal of Psychopharmacology 14 (2): 114–138. doi:10.1177/026988110001400202. PMID 10890307. 
  2. Schlicker, E.; Malinowska, B.; Kathmann, M.; Göthert, M. (1994). "Modulation of neurotransmitter release via histamine H3 heteroreceptors". Fundamental & Clinical Pharmacology 8 (2): 128–137. doi:10.1111/j.1472-8206.1994.tb00789.x. PMID 8020871. 
  3. Ma, D.; Rajakumaraswamy, N.; Maze, M. (2004). "2-Adrenoceptor agonists: Shedding light on neuroprotection?". British Medical Bulletin 71: 77–92. doi:10.1093/bmb/ldh036. PMID 15684247. 
  4. Katona, I.; Sperlágh, B.; Sík, A.; Käfalvi, A.; Vizi, E. S.; MacKie, K.; Freund, T. F. (1999). "Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons". The Journal of Neuroscience 19 (11): 4544–4558. doi:10.1523/JNEUROSCI.19-11-04544.1999. PMID 10341254. 
  5. Sousa, V. C.; Assaife-Lopes, N. L.; Ribeiro, J. A.; Pratt, J. A.; Brett, R. R.; Sebastião, A. M. (2010). "Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory". Neuropsychopharmacology 36 (2): 472–487. doi:10.1038/npp.2010.179. PMID 20927050. 
  6. Hoffman, A. F.; Laaris, N.; Kawamura, M.; Masino, S. A.; Lupica, C. R. (2010). "Control of Cannabinoid CB1 Receptor Function on Glutamate Axon Terminals by Endogenous Adenosine Acting at A1 Receptors". Journal of Neuroscience 30 (2): 545–555. doi:10.1523/JNEUROSCI.4920-09.2010. PMID 20071517. 
  7. Semyanov, A; Kullmann, D. M. (2000). "Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors". Neuron 25 (3): 663–72. doi:10.1016/s0896-6273(00)81068-5. PMID 10774733. 
  8. Kullmann, D. M.; Semyanov, A (2002). "Glutamatergic modulation of GABAergic signaling among hippocampal interneurons: Novel mechanisms regulating hippocampal excitability". Epilepsia 43 Suppl 5: 174–8. doi:10.1046/j.1528-1157.43.s.5.12.x. PMID 12121316.