Biology:Lasiodiplodia theobromae
Lasiodiplodia theobromae | |
---|---|
Lasiodiplodia theobromae sporulating in lesion on papaya | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Fungi |
Division: | Ascomycota |
Class: | Dothideomycetes |
Order: | Botryosphaeriales |
Family: | Botryosphaeriaceae |
Genus: | Lasiodiplodia |
Species: | L. theobromae
|
Binomial name | |
Lasiodiplodia theobromae (Pat.) Griffon & Maubl.
| |
Synonyms | |
Botryodiplodia ananassae |
Lasiodiplodia theobromae is a plant pathogen with a very wide host range. It causes rotting and dieback in most species it infects. It is a common post harvest fungus disease of citrus known as stem-end rot. It is a cause of bot canker of grapevine.[2] It also infects Biancaea sappan, a species of flowering tree also known as Sappanwood.
On rare occasions it has been found to cause fungal keratitis,[3] lesions on nail and subcutaneous tissue.[4][5]
It has been implicated in the widespread mortality of baobab (Adansonia digitata) trees in Southern Africa. A preliminary study found the deaths to have a complex set of causes requiring detailed research.[6]
Host and symptoms
L. theobromae causes diseases such as dieback, blights, and root rot in a variety of different hosts in tropical and subtropical regions.[7][8] These include guava, coconut, papaya, and grapevine.[8] Botryosphaeria dieback, which is formerly known as bot canker, is characterised by a range of symptoms that affect grapevine in particular. These symptoms affect different areas on the plant and can be used to diagnose this disease along with other factors. In the trunk and cordon of the plant symptoms include cankers coming out of the wounds, wedge shaped lesions when cut in cross sections and dieback. Dieback is characterized as a ‘dead arm’ and a loss of spur positions. More symptoms include stunted shoots in the spring, delay or lack of growth in the spur positions of the bud burst, bleached canes and necrotic buds. Bud necrosis, bud failure, and the dieback of arms are all a result of the necrosis of the hosts vascular system.[9]
It can also affect the fruit of durians such as Durio graveolens.[10]
Disease cycle
The fungus over-winters as pycnidia on the outside of diseased wood. The pycnidia produces and releases two-celled, dark brown, striated conidia.[11] The conidia are then dispersed by wind and rain splash, spreading the fungi to other vines, and from one part of the vine to another. Disease develops when conidia land on freshly cut or damaged wood. The conidia germinate the tissue of the wood and start causing damage to the vascular system. Cankers begin to form around the initial infection point and eventually complete damage of the vascular system causes necrosis and dieback of the wood. In some instances, pseudothecia form on the outside of cankers and produce ascospores which are then dispersed like conidia and infect surrounding wounds.[12]
Management
There are many different procedures that can be implemented to manage dieback in a vineyard. These can either be done to prevent further infection by breaking the disease cycle or to recover plants after initial infection. Good hygiene must be practiced when removing infection sources in order to prevent further infection to the rest of the vineyard as well as to avoid cross contamination.[13] Strategies that can be used for prevention and recovery are listed in the table below:
Aim | Strategy | Method | |
---|---|---|---|
Prevention | Cultural Practices |
| |
Chemical Practices
Protection of pruning wounds is the most efficient and cost effective way to prevent grapevine trunk diseases. |
| ||
Management | Removal of Infected Wood |
|
References
- ↑ 1.0 1.1 "Lasiodiplodia theobromae" (in en). Bethesda, MD: National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=45133. "Lineage( full ) cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Pezizomycotina; leotiomyceta; dothideomyceta; Dothideomycetes; Dothideomycetes incertae sedis; Botryosphaeriales; Botryosphaeriaceae; Lasiodiplodia"
- ↑ Identification and Pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the Causal Agents of Bot Canker Disease of Grapevines in Mexico. J. R. Úrbez-Torres, G. M. Leavitt, J. C. Guerrero, J. Guevara and W. D. Gubler, Plant Disease, April 2008, Volume 92, Number 4, pages 519-529, doi:10.1094/PDIS-92-4-0519
- ↑ "Mycology Online - Lasiodiplodia theobromae". http://www.mycology.adelaide.edu.au/gallery/photos/lasio1.html.
- ↑ "Mycology Online -- Lasiodiplodia". http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Coelomycetes/Lasiodiplodia/.
- ↑ Summerbell, RC; Krajden, S; Levine, R; Fuksa, M (2004). "Subcutaneous phaeohyphomycosis caused by Lasiodiplodia theobromae and successfully treated surgically". Med Mycol 42 (6): 543–7. doi:10.1080/13693780400005916. PMID 15682643.
- ↑ "Archived copy". http://src.fabinet.up.ac.za/cthb/pdf/Baobab%20report2002%20Roux.pdf.
- ↑ P. Sreerama Kumar, Leena Singh (December 2009). "Lasiodiplodia theobromae is a Mycoparasite of a Powdery Mildew Pathogen". Mycobiology 37 (4): 308–9. doi:10.4489/MYCO.2009.37.4.308. PMID 23983554.
- ↑ 8.0 8.1 Juan M. Tovar Pedraza, José A. Mora Aguilera. "CONTROL OF Lasiodiplodia theobromae, THE CAUSAL AGENT OF DIEBACK OF SAPOTE MAMEY [Pouteria sapota (Jacq.) H. E. Moore and Stearn GRAFTS IN MÉXICO"]. http://www.revistafitotecniamexicana.org/documentos/36-3/6a.pdf.
- ↑ E. Rodríguez-Gálvez, E. MaldonadoA. Alves (October 2014). "Identification and pathogenicity of Lasiodiplodia theobromae causing dieback of table grapes in Peru". European Journal of Plant Pathology 141 (3): 477–489. doi:10.1007/s10658-014-0557-8.
- ↑ Sivapalan, A.; Metussin, Rosidah; Harndan, Fuziah; Zain, Rokiah Mohd (December 1998). "Fungi associated with postharvest fruit rots of Durio graveolens and D. kutejensis in Brunei Darussalam" (in en). Australasian Plant Pathology 27 (4): 274–277. doi:10.1071/AP98033. ISSN 1448-6032. OCLC 204773204.
- ↑ Ellis, David. "Lasiodiplodia theobromae". http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Coelomycetes/Lasiodiplodia/.
- ↑ Wayne Pitt, Sandra Savocchia (August 2012). "Botryosphaeria Dieback: Identification and Management". https://www.csu.edu.au/__data/assets/pdf_file/0004/455197/NWGIC-fs4-botdieback.pdf.
- ↑ MUHAMMAD ALI KHANZADA, A. MUBEEN LODHI (2005). "CHEMICAL CONTROL OF LASIODIPLODIA THEOBROMAE, THE CAUSAL AGENT OF MANGO DECLINE IN SINDH". http://totoagriculture.org/PDFs/PlantDiseasesPests/6157.pdf.
External links
- USDA ARS Fungal Database
- "Mycology Online | Lasiodiplodia theobromae". mycology.adelaide.edu.au. http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Coelomycetes/Lasiodiplodia/.
Wikidata ☰ Q6493323 entry
Original source: https://en.wikipedia.org/wiki/Lasiodiplodia theobromae.
Read more |