Biology:Manidens

From HandWiki
Short description: Extinct genus of dinosaurs

Manidens
Temporal range:
Middle Toarcian
~179.17–178.07 Ma
[1]
Manidens skull.jpg
Skull reconstruction
Scientific classification e
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Ornithischia
Family: Heterodontosauridae
Subfamily: Heterodontosaurinae
Genus: Manidens
Pol et al. 2011
Type species
Manidens condorensis
Pol et al. 2011

Manidens is an extinct genus of heterodontosaurid dinosaur from the Early Jurassic of Patagonia. It is a sister taxon of the closely related Pegomastax from South Africa .[2] Fossils have been found in the Cañadón Asfalto Formation in Chubut Province, Argentina , dating to the Toarcian.[3]

Etymology

The type species of Manidens, Manidens condorensis, was described in the journal Naturwissenschaften in 2011. Manidens was named in by Diego Pol, Oliver Rauhut and Marcos Becerra. The generic name is derived from Latin manus, "hand", and dens, "tooth", a reference to the hand-shaped form of the posterior lower teeth. The specific name refers to the village of Cerro Cóndor, located near to the Queso Rallado site where the specimen was found by zoologist Guillermo Rougier.[3]

Description

The holotype specimen of Manidens, MPEF-PV 3211, consists of a partial skeleton with a skull and lower jaw, including the axial column except most of the tail; a left shoulder girdle; and the pelvis. The specimens MPEF-PV 1719, 1786, 1718, 3810, 3811, isolated posterior teeth, from the same locality and horizon as the holotype specimen are also referred to this genus.[4] The specimens were found in the Queso Rallado locality of the Cañadón Asfalto Formation, dating originally to the Aalenian–Early Bathonian stages, 171 ± 5 to 167 ± 4 Ma, yet where latter constrained to 179-178 million years, that is Middle-Late Toarcian.[5]

Manidens was a relatively basal heterodontosaurid that grew to about 60 cm (2.0 ft) in length and 500 g (18 oz) in body mass, smaller than later heterodontosaurids.[6] It has high-crowned teeth indicative of an increased adaptation to a herbivorous diet but lacks the wear facets seen in more advanced forms like Heterodontosaurus. Manidens is the sister taxon of a clade consisting of the African species Heterodontosaurus, Abrictosaurus and Lycorhinus, indicating an early radiation of the heterodontosaurids.[3] The discovery of filamentous integumentary structures in the related Tianyulong suggests that they may also have been present in other heterodontosaurids such as Manidens.[7]

Life restoration

Tooth replacement was asynchronous in Manidens, which exhibited dental replacement in a continuous anterior-to-posterior wave pattern. Furthermore, Manidens represents the first known occurrence of a heterodontosaurid with dental replacement of its caniniform teeth, which may have had distinct timing relative to its cheek dentition.[8]

Phylogeny

Cladogram after Pol et al., 2011:[3]

Ornithischia

Pisanosaurus

Echinodon*

Heterodontosauridae

Tianyulong

Fruitadens

Manidens

Abrictosaurus

BMNH A100

Heterodontosaurus

Lycorhinus

Eocursor

Genasauria

*Note: Pol et al. regard Echinodon as a genus of Heterodontosauridae.

Paleoecology

Fossils attributed to Manidens from Argentina indicate that this dinosaur may have been at least partially arboreal. The specimens consists of a series of bones from both hind feet and a few tail vertebrae, and are tentatively attributed to Manidens on the basis of provenance. The long toe bones indicate that the toe bones were capable of grasping; distinct anchor attachments for the muscles and tendons of the hallux indicate that its hallux was smaller than the rest of the toes but could still have grasped. Principal component analysis found that the feet of Manidens were most similar to those of tree-perching birds.[9]

References

  1. Fantasia, A.; Föllmi, K. B.; Adatte, T.; Spangenberg, J. E.; Schoene, B.; Barker, R. T.; Scasso, R. A. (2021). "Late Toarcian continental palaeoenvironmental conditions: An example from the Canadon Asfalto Formation in southern Argentina". Gondwana Research 89 (1): 47–65. doi:10.1016/j.gr.2020.10.001. Bibcode2021GondR..89...47F. https://www.sciencedirect.com/science/article/pii/S1342937X20302562. Retrieved 27 August 2021. 
  2. Sereno, Paul C. (3 October 2012). "Taxonomy, morphology, masticatory function and phylogeny of heterodontosaurid dinosaurs". ZooKeys (223): 1–225. doi:10.3897/zookeys.223.2840. PMID 23166462. 
  3. 3.0 3.1 3.2 3.3 Pol, D.; Rauhut, O.W.M.; Becerra, M. (2011). "A Middle Jurassic heterodontosaurid dinosaur from Patagonia and the evolution of heterodontosaurids". Naturwissenschaften 98 (5): 369–379. doi:10.1007/s00114-011-0780-5. PMID 21452054. Bibcode2011NW.....98..369P. 
  4. Becerra, Marcos G.; Pol, Diego; Marsicano, Claudia; Rauhut, Oliver (22 May 2013). "The dentition of Manidens condorensis (Ornithischia; Heterodontosauridae) from the Jurassic Cañadón Asfalto Formation of Patagonia: morphology, heterodonty and the use of statistical methods for identifying isolated teeth". Historical Biology 26 (4): 480–492. doi:10.1080/08912963.2013.794227. 
  5. Pol, D.; Gomez, K.; Holwerda, F. M.; Rauhut, O. W.; Carballido, J. L. (2022). "Sauropods from the Early Jurassic of South America and the Radiation of Eusauropoda". South American Sauropodomorph Dinosaurs 1 (1): 131–163. doi:10.1007/978-3-030-95959-3_4. https://link.springer.com/chapter/10.1007/978-3-030-95959-3_4. Retrieved 2 May 2022. 
  6. Paul, G. S. (2016). The Princeton Field Guide to Dinosaurs (2nd ed.). Princeton, New Jersey: Princeton University Press. pp. 267. ISBN 9780691167664. 
  7. Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming (19 March 2009). "An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures". Nature 458 (7236): 333–336. doi:10.1038/nature07856. PMID 19295609. Bibcode2009Natur.458..333Z. 
  8. Becerra, Marcos G.; Pol, Diego; Whitlock, John A.; Porro, Laura B. (29 September 2020). "Tooth replacement in Manidens condorensis: baseline study to address the replacement pattern in dentitions of early ornithischians". Papers in Palaeontology 7 (2): 1167–1193. doi:10.1002/spp2.1337. https://discovery.ucl.ac.uk/id/eprint/10115472/. 
  9. Becerra, M.C.; Pol, D.; Rauhut, O.W.M.; Cerda, I.A. (2016). "New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids". Journal of Paleontology 90 (3): 555–577. doi:10.1017/jpa.2016.24. https://www.cambridge.org/core/journals/journal-of-paleontology/article/div-classtitlenew-heterodontosaurid-remains-from-the-canadon-asfalto-formation-cursoriality-and-the-functional-importance-of-the-pes-in-small-heterodontosauridsdiv/7E5BA9BACC6FD50F167845272C05391D. 

Wikidata ☰ Q1936116 entry