Biology:TBRG4

From HandWiki
A representation of the 3D structure of the protein myoglobin showing turquoise α-helices.
Generic protein structure example

Transforming growth factor beta regulator 4 (TBRG4), also known as cell cycle progression restoration protein 2 (CPR2) and FAST kinase domain-containing protein 4 (FASTKD4), is a protein that in humans is encoded by the TBRG4 gene on chromosome 7.[1][2][3] This protein is part of the FASTKD family, which is known for regulating the energy balance of mitochondria under stress and cell cycle progression.[4][5] TBRG4 is involved in cell proliferation in hematopoiesis and multiple myeloma.[6][7]

Structure

TBRG4 shares structural characteristics of the FASTKD family, including an N-terminal mitochondrial targeting domain and three C-terminal domains: two FAST kinase-like domains (FAST_1 and FAST_2) and a RNA-binding domain (RAP).[4][5] The mitochondrial targeting domain directs TBRG4 to be imported into the mitochondria. Though the functions of the C-terminal domains are unknown, RAP possibly binds RNA during trans-splicing.[4] TBRG4 also contains multiple putative leucine zipper domains.[2]

Function

As a member of the FASTKD family, TBRG4 localizes to the mitochondria to modulate their energy balance, especially under conditions of stress. Though ubiquitously expressed in all tissues, TBRG4 appears more abundantly in skeletal muscle, heart muscle, and other tissues enriched in mitochondria.[4] TBRG4 also localizes to the bone marrow (BM), where it functions in hematopoiesis by inducing IL-6 and VEGF secretion, which then stimulate cell proliferation and angiogenesis. However, it inhibits immunoglobulin secretions by normal B cells.[6]

Clinical significance

The involvement of TBRG4 in hematopoiesis links it to multiple myeloma (MM), which stems from malignant proliferation of plasma cells in the bone marrow.[6] High expression of TBRG4 has been linked to enhanced cell proliferation and poorer outcome; thus, downregulation of its expression may contribute to reducing tumor growth by arresting cell cycle progression.[7]

References

  1. UniProt: Q969Z0
  2. 2.0 2.1 "Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells". Genetics 147 (3): 1063–76. Nov 1997. doi:10.1093/genetics/147.3.1063. PMID 9383053. 
  3. "Entrez Gene: TBRG4 transforming growth factor beta regulator 4". https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9238. 
  4. 4.0 4.1 4.2 4.3 "Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration". Biochemical and Biophysical Research Communications 401 (3): 440–6. Oct 2010. doi:10.1016/j.bbrc.2010.09.075. PMID 20869947. 
  5. 5.0 5.1 "A novel transcription complex that selectively modulates apoptosis of breast cancer cells through regulation of FASTKD2". Molecular and Cellular Biology 31 (11): 2287–98. Jun 2011. doi:10.1128/MCB.01381-10. PMID 21444724. 
  6. 6.0 6.1 6.2 "Extramedullary relapse of multiple myeloma defined as the highest risk group based on deregulated gene expression data". Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia 159 (2): 288–93. Apr 2015. doi:10.5507/bp.2015.014. PMID 25877407. http://biomed.papers.upol.cz/doi/10.5507/bp.2015.014.pdf. 
  7. 7.0 7.1 "Evaluating gene expression profiling by quantitative polymerase chain reaction to develop a clinically feasible test for outcome prediction in multiple myeloma". British Journal of Haematology 163 (2): 223–34. Oct 2013. doi:10.1111/bjh.12519. PMID 23952215. 

Further reading