Boolean model (probability theory)

From HandWiki
Realization of Boolean model with random-radii discs.

For statistics in probability theory, the Boolean-Poisson model or simply Boolean model for a random subset of the plane (or higher dimensions, analogously) is one of the simplest and most tractable models in stochastic geometry. Take a Poisson point process of rate λ in the plane and make each point be the center of a random set; the resulting union of overlapping sets is a realization of the Boolean model . More precisely, the parameters are λ and a probability distribution on compact sets; for each point ξ of the Poisson point process we pick a set Cξ from the distribution, and then define as the union ξ(ξ+Cξ) of translated sets.

To illustrate tractability with one simple formula, the mean density of equals 1exp(λA) where Γ denotes the area of Cξ and A=E(Γ). The classical theory of stochastic geometry develops many further formulae. [1][2]

As related topics, the case of constant-sized discs is the basic model of continuum percolation[3] and the low-density Boolean models serve as a first-order approximations in the study of extremes in many models.[4]

References

  1. Stoyan, D.; Kendall, W.S.; Mecke, J. (1987). Stochastic geometry and its applications. Wiley. 
  2. Schneider, R.; Weil, W. (2008). Stochastic and Integral Geometry. Springer. 
  3. Meester, R.; Roy, R. (2008). Continuum Percolation. Cambridge University Press. 
  4. Aldous, D. (1988). Probability Approximations via the Poisson Clumping Heuristic. Springer.