Bridgeland stability condition
In mathematics, and especially algebraic geometry, a Bridgeland stability condition, defined by Tom Bridgeland, is an algebro-geometric stability condition defined on elements of a triangulated category. The case of original interest and particular importance is when this triangulated category is the derived category of coherent sheaves on a Calabi–Yau manifold, and this situation has fundamental links to string theory and the study of D-branes. Such stability conditions were introduced in a rudimentary form by Michael Douglas called [math]\displaystyle{ \Pi }[/math]-stability and used to study BPS B-branes in string theory.[1] This concept was made precise by Bridgeland, who phrased these stability conditions categorically, and initiated their study mathematically.[2]
Definition
The definitions in this section are presented as in the original paper of Bridgeland, for arbitrary triangulated categories.[2] Let [math]\displaystyle{ \mathcal{D} }[/math] be a triangulated category.
Slicing of triangulated categories
A slicing [math]\displaystyle{ \mathcal{P} }[/math] of [math]\displaystyle{ \mathcal{D} }[/math] is a collection of full additive subcategories [math]\displaystyle{ \mathcal{P}(\varphi) }[/math] for each [math]\displaystyle{ \varphi\in \mathbb{R} }[/math] such that
- [math]\displaystyle{ \mathcal{P}(\varphi)[1] = \mathcal{P}(\varphi+1) }[/math] for all [math]\displaystyle{ \varphi }[/math], where [math]\displaystyle{ [1] }[/math] is the shift functor on the triangulated category,
- if [math]\displaystyle{ \varphi_1 \gt \varphi_2 }[/math] and [math]\displaystyle{ A\in \mathcal{P}(\varphi_1) }[/math] and [math]\displaystyle{ B\in \mathcal{P}(\varphi_2) }[/math], then [math]\displaystyle{ \operatorname{Hom}(A,B)=0 }[/math], and
- for every object [math]\displaystyle{ E\in \mathcal{D} }[/math] there exists a finite sequence of real numbers [math]\displaystyle{ \varphi_1\gt \varphi_2\gt \cdots\gt \varphi_n }[/math] and a collection of triangles
- with [math]\displaystyle{ A_i\in \mathcal{P}(\varphi_i) }[/math] for all [math]\displaystyle{ i }[/math].
The last property should be viewed as axiomatically imposing the existence of Harder–Narasimhan filtrations on elements of the category [math]\displaystyle{ \mathcal{D} }[/math].
Stability conditions
A Bridgeland stability condition on a triangulated category [math]\displaystyle{ \mathcal{D} }[/math] is a pair [math]\displaystyle{ (Z,\mathcal{P}) }[/math] consisting of a slicing [math]\displaystyle{ \mathcal{P} }[/math] and a group homomorphism [math]\displaystyle{ Z: K(\mathcal{D}) \to \mathbb{C} }[/math], where [math]\displaystyle{ K(\mathcal{D}) }[/math] is the Grothendieck group of [math]\displaystyle{ \mathcal{D} }[/math], called a central charge, satisfying
- if [math]\displaystyle{ 0\ne E\in \mathcal{P}(\varphi) }[/math] then [math]\displaystyle{ Z(E) = m(E) \exp(i\pi \varphi) }[/math] for some strictly positive real number [math]\displaystyle{ m(E) \in \mathbb{R}_{\gt 0} }[/math].
It is convention to assume the category [math]\displaystyle{ \mathcal{D} }[/math] is essentially small, so that the collection of all stability conditions on [math]\displaystyle{ \mathcal{D} }[/math] forms a set [math]\displaystyle{ \operatorname{Stab}(\mathcal{D}) }[/math]. In good circumstances, for example when [math]\displaystyle{ \mathcal{D} = \mathcal{D}^b \operatorname{Coh}(X) }[/math] is the derived category of coherent sheaves on a complex manifold [math]\displaystyle{ X }[/math], this set actually has the structure of a complex manifold itself.
Technical remarks about stability condition
It is shown by Bridgeland that the data of a Bridgeland stability condition is equivalent to specifying a bounded t-structure [math]\displaystyle{ \mathcal{P}(\gt 0) }[/math] on the category [math]\displaystyle{ \mathcal{D} }[/math] and a central charge [math]\displaystyle{ Z: K(\mathcal{A})\to \mathbb{C} }[/math] on the heart [math]\displaystyle{ \mathcal{A} = \mathcal{P}((0,1]) }[/math] of this t-structure which satisfies the Harder–Narasimhan property above.[2]
An element [math]\displaystyle{ E\in\mathcal{A} }[/math] is semi-stable (resp. stable) with respect to the stability condition [math]\displaystyle{ (Z,\mathcal{P}) }[/math] if for every surjection [math]\displaystyle{ E \to F }[/math] for [math]\displaystyle{ F\in \mathcal{A} }[/math], we have [math]\displaystyle{ \varphi(E) \le (\text{resp.}\lt ) \, \varphi(F) }[/math] where [math]\displaystyle{ Z(E) = m(E) \exp(i\pi \varphi(E)) }[/math] and similarly for [math]\displaystyle{ F }[/math].
Examples
From the Harder–Narasimhan filtration
Recall the Harder–Narasimhan filtration for a smooth projective curve [math]\displaystyle{ X }[/math] implies for any coherent sheaf [math]\displaystyle{ E }[/math] there is a filtration
[math]\displaystyle{ 0 = E_0 \subset E_1 \subset \cdots \subset E_n = E }[/math]
such that the factors [math]\displaystyle{ E_j/E_{j-1} }[/math] have slope [math]\displaystyle{ \mu_i=\text{deg}/\text{rank} }[/math]. We can extend this filtration to a bounded complex of sheaves [math]\displaystyle{ E^\bullet }[/math] by considering the filtration on the cohomology sheaves [math]\displaystyle{ E^i = H^i(E^\bullet)[+i] }[/math] and defining the slope of [math]\displaystyle{ E^i_j = \mu_i + j }[/math], giving a function
[math]\displaystyle{ \phi : K(X) \to \mathbb{R} }[/math]
for the central charge.
Elliptic curves
There is an analysis by Bridgeland for the case of Elliptic curves. He finds[2][3] there is an equivalence
[math]\displaystyle{ \text{Stab}(X)/\text{Aut}(X) \cong \text{GL}^+(2,\mathbb{R})/\text{SL}(2,\mathbb{Z}) }[/math]
where [math]\displaystyle{ \text{Stab}(X) }[/math] is the set of stability conditions and [math]\displaystyle{ \text{Aut}(X) }[/math] is the set of autoequivalences of the derived category [math]\displaystyle{ D^b(X) }[/math].
References
- ↑ Douglas, M.R., Fiol, B. and Römelsberger, C., 2005. Stability and BPS branes. Journal of High Energy Physics, 2005(09), p. 006.
- ↑ Jump up to: 2.0 2.1 2.2 2.3 Bridgeland, Tom (2006-02-08). "Stability conditions on triangulated categories". arXiv:math/0212237.
- ↑ Uehara, Hokuto (2015-11-18). "Autoequivalences of derived categories of elliptic surfaces with non-zero Kodaira dimension". pp. 10–12. arXiv:1501.06657 [math.AG].
Papers
- Stability conditions on [math]\displaystyle{ A n }[/math] singularities
- Interactions between autoequivalences, stability conditions, and moduli problems
Original source: https://en.wikipedia.org/wiki/Bridgeland stability condition.
Read more |