Busemann G-space
From HandWiki
In mathematics, a Busemann G-space is a type of metric space first described by Herbert Busemann in 1942.
If [math]\displaystyle{ (X,d) }[/math] is a metric space such that
- for every two distinct [math]\displaystyle{ x, y \in X }[/math] there exists [math]\displaystyle{ z \in X-\{x,y\} }[/math] such that [math]\displaystyle{ d(x,z)+d(y,z)=d(x,z) }[/math] (Menger convexity)
- every [math]\displaystyle{ d }[/math]-bounded set of infinite cardinality possesses accumulation points
- for every [math]\displaystyle{ w \in X }[/math] there exists [math]\displaystyle{ \rho_w }[/math] such that for any distinct points [math]\displaystyle{ x,y \in B(w,\rho_w) }[/math] there exists [math]\displaystyle{ z \in ( b(w,\rho_w)-\{ x,y \} )^\circ }[/math] such that [math]\displaystyle{ d(x,z)+d(y,z)=d(x,z) }[/math] (geodesics are locally extendable)
- for any distinct points [math]\displaystyle{ x,y \in X }[/math], if [math]\displaystyle{ u,v \in X }[/math] such that [math]\displaystyle{ d(x,u)+d(y,u)=d(x,u) }[/math], [math]\displaystyle{ d(x,v)+d(y,v)=d(x,v) }[/math] and [math]\displaystyle{ d(y,u)=d(y,v) }[/math] (geodesic extensions are unique).
then X is said to be a Busemann G-space. Every Busemann G-space is a homogenous space.
The Busemann conjecture states that every Busemann G-space is a topological manifold. It is a special case of the Bing–Borsuk conjecture. The Busemann conjecture is known to be true for dimensions 1 to 4.[1][2]
References
- ↑ M., Halverson, Denise; Dušan, Repovš (23 December 2008). "The Bing–Borsuk and the Busemann conjectures" (in en). Mathematical Communications 13 (2). ISSN 1331-0623. https://hrcak.srce.hr/30884.
- ↑ Papadopoulos, Athanase (2005) (in en). Metric Spaces, Convexity and Nonpositive Curvature. European Mathematical Society. pp. 77. ISBN 9783037190104. https://books.google.com/books?id=JrwzXZB0YrIC&pg=PA77.
![]() | Original source: https://en.wikipedia.org/wiki/Busemann G-space.
Read more |