Canonical basis
In mathematics, a canonical basis is a basis of an algebraic structure that is canonical in a sense that depends on the precise context:
- In a coordinate space, and more generally in a free module, it refers to the standard basis defined by the Kronecker delta.
- In a polynomial ring, it refers to its standard basis given by the monomials, [math]\displaystyle{ (X^i)_i }[/math].
- For finite extension fields, it means the polynomial basis.
- In linear algebra, it refers to a set of n linearly independent generalized eigenvectors of an n×n matrix [math]\displaystyle{ A }[/math], if the set is composed entirely of Jordan chains.[1]
- In representation theory, it refers to the basis of the quantum groups introduced by Lusztig.
Representation theory
The canonical basis for the irreducible representations of a quantized enveloping algebra of type [math]\displaystyle{ ADE }[/math] and also for the plus part of that algebra was introduced by Lusztig [2] by two methods: an algebraic one (using a braid group action and PBW bases) and a topological one (using intersection cohomology). Specializing the parameter [math]\displaystyle{ q }[/math] to [math]\displaystyle{ q=1 }[/math] yields a canonical basis for the irreducible representations of the corresponding simple Lie algebra, which was not known earlier. Specializing the parameter [math]\displaystyle{ q }[/math] to [math]\displaystyle{ q=0 }[/math] yields something like a shadow of a basis. This shadow (but not the basis itself) for the case of irreducible representations was considered independently by Kashiwara;[3] it is sometimes called the crystal basis. The definition of the canonical basis was extended to the Kac-Moody setting by Kashiwara [4] (by an algebraic method) and by Lusztig [5] (by a topological method).
There is a general concept underlying these bases:
Consider the ring of integral Laurent polynomials [math]\displaystyle{ \mathcal{Z}:=\mathbb{Z}\left[v,v^{-1}\right] }[/math] with its two subrings [math]\displaystyle{ \mathcal{Z}^{\pm}:=\mathbb{Z}\left[v^{\pm 1}\right] }[/math] and the automorphism [math]\displaystyle{ \overline{\cdot} }[/math] defined by [math]\displaystyle{ \overline{v}:=v^{-1} }[/math].
A precanonical structure on a free [math]\displaystyle{ \mathcal{Z} }[/math]-module [math]\displaystyle{ F }[/math] consists of
- A standard basis [math]\displaystyle{ (t_i)_{i\in I} }[/math] of [math]\displaystyle{ F }[/math],
- An interval finite partial order on [math]\displaystyle{ I }[/math], that is, [math]\displaystyle{ (-\infty,i] := \{j\in I \mid j\leq i\} }[/math] is finite for all [math]\displaystyle{ i\in I }[/math],
- A dualization operation, that is, a bijection [math]\displaystyle{ F\to F }[/math] of order two that is [math]\displaystyle{ \overline{\cdot} }[/math]-semilinear and will be denoted by [math]\displaystyle{ \overline{\cdot} }[/math] as well.
If a precanonical structure is given, then one can define the [math]\displaystyle{ \mathcal{Z}^{\pm} }[/math] submodule [math]\displaystyle{ F^{\pm} := \sum \mathcal{Z}^{\pm} t_j }[/math] of [math]\displaystyle{ F }[/math].
A canonical basis of the precanonical structure is then a [math]\displaystyle{ \mathcal{Z} }[/math]-basis [math]\displaystyle{ (c_i)_{i\in I} }[/math] of [math]\displaystyle{ F }[/math] that satisfies:
- [math]\displaystyle{ \overline{c_i}=c_i }[/math] and
- [math]\displaystyle{ c_i \in \sum_{j\leq i} \mathcal{Z}^+ t_j \text{ and } c_i \equiv t_i \mod vF^+ }[/math]
for all [math]\displaystyle{ i\in I }[/math].
One can show that there exists at most one canonical basis for each precanonical structure.[6] A sufficient condition for existence is that the polynomials [math]\displaystyle{ r_{ij}\in\mathcal{Z} }[/math] defined by [math]\displaystyle{ \overline{t_j}=\sum_i r_{ij} t_i }[/math] satisfy [math]\displaystyle{ r_{ii}=1 }[/math] and [math]\displaystyle{ r_{ij}\neq 0 \implies i\leq j }[/math].
A canonical basis induces an isomorphism from [math]\displaystyle{ \textstyle F^+\cap \overline{F^+} = \sum_i \mathbb{Z}c_i }[/math] to [math]\displaystyle{ F^+/vF^+ }[/math].
Hecke algebras
Let [math]\displaystyle{ (W,S) }[/math] be a Coxeter group. The corresponding Iwahori-Hecke algebra [math]\displaystyle{ H }[/math] has the standard basis [math]\displaystyle{ (T_w)_{w\in W} }[/math], the group is partially ordered by the Bruhat order which is interval finite and has a dualization operation defined by [math]\displaystyle{ \overline{T_w}:=T_{w^{-1}}^{-1} }[/math]. This is a precanonical structure on [math]\displaystyle{ H }[/math] that satisfies the sufficient condition above and the corresponding canonical basis of [math]\displaystyle{ H }[/math] is the Kazhdan–Lusztig basis
- [math]\displaystyle{ C_w' = \sum_{y\leq w} P_{y,w}(v^2) T_w }[/math]
with [math]\displaystyle{ P_{y,w} }[/math] being the Kazhdan–Lusztig polynomials.
Linear algebra
If we are given an n × n matrix [math]\displaystyle{ A }[/math] and wish to find a matrix [math]\displaystyle{ J }[/math] in Jordan normal form, similar to [math]\displaystyle{ A }[/math], we are interested only in sets of linearly independent generalized eigenvectors. A matrix in Jordan normal form is an "almost diagonal matrix," that is, as close to diagonal as possible. A diagonal matrix [math]\displaystyle{ D }[/math] is a special case of a matrix in Jordan normal form. An ordinary eigenvector is a special case of a generalized eigenvector.
Every n × n matrix [math]\displaystyle{ A }[/math] possesses n linearly independent generalized eigenvectors. Generalized eigenvectors corresponding to distinct eigenvalues are linearly independent. If [math]\displaystyle{ \lambda }[/math] is an eigenvalue of [math]\displaystyle{ A }[/math] of algebraic multiplicity [math]\displaystyle{ \mu }[/math], then [math]\displaystyle{ A }[/math] will have [math]\displaystyle{ \mu }[/math] linearly independent generalized eigenvectors corresponding to [math]\displaystyle{ \lambda }[/math].
For any given n × n matrix [math]\displaystyle{ A }[/math], there are infinitely many ways to pick the n linearly independent generalized eigenvectors. If they are chosen in a particularly judicious manner, we can use these vectors to show that [math]\displaystyle{ A }[/math] is similar to a matrix in Jordan normal form. In particular,
Definition: A set of n linearly independent generalized eigenvectors is a canonical basis if it is composed entirely of Jordan chains.
Thus, once we have determined that a generalized eigenvector of rank m is in a canonical basis, it follows that the m − 1 vectors [math]\displaystyle{ \mathbf x_{m-1}, \mathbf x_{m-2}, \ldots , \mathbf x_1 }[/math] that are in the Jordan chain generated by [math]\displaystyle{ \mathbf x_m }[/math] are also in the canonical basis.[7]
Computation
Let [math]\displaystyle{ \lambda_i }[/math] be an eigenvalue of [math]\displaystyle{ A }[/math] of algebraic multiplicity [math]\displaystyle{ \mu_i }[/math]. First, find the ranks (matrix ranks) of the matrices [math]\displaystyle{ (A - \lambda_i I), (A - \lambda_i I)^2, \ldots , (A - \lambda_i I)^{m_i} }[/math]. The integer [math]\displaystyle{ m_i }[/math] is determined to be the first integer for which [math]\displaystyle{ (A - \lambda_i I)^{m_i} }[/math] has rank [math]\displaystyle{ n - \mu_i }[/math] (n being the number of rows or columns of [math]\displaystyle{ A }[/math], that is, [math]\displaystyle{ A }[/math] is n × n).
Now define
- [math]\displaystyle{ \rho_k = \operatorname{rank}(A - \lambda_i I)^{k-1} - \operatorname{rank}(A - \lambda_i I)^k \qquad (k = 1, 2, \ldots , m_i). }[/math]
The variable [math]\displaystyle{ \rho_k }[/math] designates the number of linearly independent generalized eigenvectors of rank k (generalized eigenvector rank; see generalized eigenvector) corresponding to the eigenvalue [math]\displaystyle{ \lambda_i }[/math] that will appear in a canonical basis for [math]\displaystyle{ A }[/math]. Note that
- [math]\displaystyle{ \operatorname{rank}(A - \lambda_i I)^0 = \operatorname{rank}(I) = n . }[/math]
Once we have determined the number of generalized eigenvectors of each rank that a canonical basis has, we can obtain the vectors explicitly (see generalized eigenvector).[8]
Example
This example illustrates a canonical basis with two Jordan chains. Unfortunately, it is a little difficult to construct an interesting example of low order.[9] The matrix
- [math]\displaystyle{ A = \begin{pmatrix} 4 & 1 & 1 & 0 & 0 & -1 \\ 0 & 4 & 2 & 0 & 0 & 1 \\ 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix} }[/math]
has eigenvalues [math]\displaystyle{ \lambda_1 = 4 }[/math] and [math]\displaystyle{ \lambda_2 = 5 }[/math] with algebraic multiplicities [math]\displaystyle{ \mu_1 = 4 }[/math] and [math]\displaystyle{ \mu_2 = 2 }[/math], but geometric multiplicities [math]\displaystyle{ \gamma_1 = 1 }[/math] and [math]\displaystyle{ \gamma_2 = 1 }[/math].
For [math]\displaystyle{ \lambda_1 = 4, }[/math] we have [math]\displaystyle{ n - \mu_1 = 6 - 4 = 2, }[/math]
- [math]\displaystyle{ (A - 4I) }[/math] has rank 5,
- [math]\displaystyle{ (A - 4I)^2 }[/math] has rank 4,
- [math]\displaystyle{ (A - 4I)^3 }[/math] has rank 3,
- [math]\displaystyle{ (A - 4I)^4 }[/math] has rank 2.
Therefore [math]\displaystyle{ m_1 = 4. }[/math]
- [math]\displaystyle{ \rho_4 = \operatorname{rank}(A - 4I)^3 - \operatorname{rank}(A - 4I)^4 = 3 - 2 = 1, }[/math]
- [math]\displaystyle{ \rho_3 = \operatorname{rank}(A - 4I)^2 - \operatorname{rank}(A - 4I)^3 = 4 - 3 = 1, }[/math]
- [math]\displaystyle{ \rho_2 = \operatorname{rank}(A - 4I)^1 - \operatorname{rank}(A - 4I)^2 = 5 - 4 = 1, }[/math]
- [math]\displaystyle{ \rho_1 = \operatorname{rank}(A - 4I)^0 - \operatorname{rank}(A - 4I)^1 = 6 - 5 = 1. }[/math]
Thus, a canonical basis for [math]\displaystyle{ A }[/math] will have, corresponding to [math]\displaystyle{ \lambda_1 = 4, }[/math] one generalized eigenvector each of ranks 4, 3, 2 and 1.
For [math]\displaystyle{ \lambda_2 = 5, }[/math] we have [math]\displaystyle{ n - \mu_2 = 6 - 2 = 4, }[/math]
- [math]\displaystyle{ (A - 5I) }[/math] has rank 5,
- [math]\displaystyle{ (A - 5I)^2 }[/math] has rank 4.
Therefore [math]\displaystyle{ m_2 = 2. }[/math]
- [math]\displaystyle{ \rho_2 = \operatorname{rank}(A - 5I)^1 - \operatorname{rank}(A - 5I)^2 = 5 - 4 = 1, }[/math]
- [math]\displaystyle{ \rho_1 = \operatorname{rank}(A - 5I)^0 - \operatorname{rank}(A - 5I)^1 = 6 - 5 = 1. }[/math]
Thus, a canonical basis for [math]\displaystyle{ A }[/math] will have, corresponding to [math]\displaystyle{ \lambda_2 = 5, }[/math] one generalized eigenvector each of ranks 2 and 1.
A canonical basis for [math]\displaystyle{ A }[/math] is
- [math]\displaystyle{ \left\{ \mathbf x_1, \mathbf x_2, \mathbf x_3, \mathbf x_4, \mathbf y_1, \mathbf y_2 \right\} = \left\{ \begin{pmatrix} -4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -27 \\ -4 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 25 \\ -25 \\ -2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 36 \\ -12 \\ -2 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -8 \\ -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}. }[/math]
[math]\displaystyle{ \mathbf x_1 }[/math] is the ordinary eigenvector associated with [math]\displaystyle{ \lambda_1 }[/math]. [math]\displaystyle{ \mathbf x_2, \mathbf x_3 }[/math] and [math]\displaystyle{ \mathbf x_4 }[/math] are generalized eigenvectors associated with [math]\displaystyle{ \lambda_1 }[/math]. [math]\displaystyle{ \mathbf y_1 }[/math] is the ordinary eigenvector associated with [math]\displaystyle{ \lambda_2 }[/math]. [math]\displaystyle{ \mathbf y_2 }[/math] is a generalized eigenvector associated with [math]\displaystyle{ \lambda_2 }[/math].
A matrix [math]\displaystyle{ J }[/math] in Jordan normal form, similar to [math]\displaystyle{ A }[/math] is obtained as follows:
- [math]\displaystyle{ M = \begin{pmatrix} \mathbf x_1 & \mathbf x_2 & \mathbf x_3 & \mathbf x_4 & \mathbf y_1 & \mathbf y_2 \end{pmatrix} = \begin{pmatrix} -4 & -27 & 25 & 0 & 3 & -8 \\ 0 & -4 & -25 & 36 & 2 & -4 \\ 0 & 0 & -2 & -12 & 1 & -1 \\ 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}, }[/math]
- [math]\displaystyle{ J = \begin{pmatrix} 4 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{pmatrix}, }[/math]
where the matrix [math]\displaystyle{ M }[/math] is a generalized modal matrix for [math]\displaystyle{ A }[/math] and [math]\displaystyle{ AM = MJ }[/math].[10]
See also
- Canonical form
- Change of basis
- Normal basis
- Normal form (disambiguation)
- Polynomial basis
Notes
References
- Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press
- Deng, Bangming; Ju, Jie; Parshall, Brian; Wang, Jianpan (2008), Finite Dimensional Algebras and Quantum Groups, Mathematical surveys and monographs, 150, Providence, R.I.: American Mathematical Society, ISBN 9780821875315, https://books.google.com/books?id=k9aUvxN2w2MC
- Kashiwara, Masaki (1990), "Crystalizing the q-analogue of universal enveloping algebras", Communications in Mathematical Physics 133 (2): 249–260, doi:10.1007/bf02097367, ISSN 0010-3616, Bibcode: 1990CMaPh.133..249K, https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-133/issue-2/Crystalizing-the-q-analogue-of-universal-enveloping-algebras/cmp/1104201397.full
- Kashiwara, Masaki (1991), "On crystal bases of the q-analogue of universal enveloping algebras", Duke Mathematical Journal 63 (2): 465–516, doi:10.1215/S0012-7094-91-06321-0, ISSN 0012-7094, https://doi.org/10.1215/S0012-7094-91-06321-0
- Lusztig, George (1990), "Canonical bases arising from quantized enveloping algebras", Journal of the American Mathematical Society 3 (2): 447–498, doi:10.2307/1990961, ISSN 0894-0347
- Lusztig, George (1991), "Quivers, perverse sheaves and quantized enveloping algebras", Journal of the American Mathematical Society 4 (2): 365–421, doi:10.2307/2939279, ISSN 0894-0347
- Lusztig, George (1993), Introduction to quantum groups, Boston, MA: Birkhauser Boston, ISBN 0-8176-3712-5
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: John Wiley & Sons
Original source: https://en.wikipedia.org/wiki/Canonical basis.
Read more |