Canonical signed digit

From HandWiki

In computing canonical-signed-digit (CSD, also known as non-adjacent form) is a unique way of encoding a value in a signed-digit representation (also known as redundant binary representation), which itself is non-unique representation and allows one number to be represented in many ways. Probability of digit being zero is close to 66% (vs. 50% in two's complement encoding) and leads to efficient implementations of add/subtract networks (e.g. multiplication by a constant) in hardwired digital signal processing.[1]

The representation uses a sequence of one or more of the symbols, -1, 0, +1 (alternatively -, 0 or +) with each position possibly representing the addition or subtraction of a power of 2. For instance 23 is represented as +0-00-, which expands to +252320 or 3281=23

Implementation

CSD is obtained by transforming every sequence of zero followed by ones (011...1) into + followed by zeros and the least significant bit by - (+0....0-).

As an example: the number 7 has a two's complement representation 0111

(7=0×23+1×22+1×21+1×20=4+2+1)

into +00-

(7=+1×23+0×22+0×211×20=81)

References

  1. Hewlitt, R.M. (2000). "Canonical signed digit representation for FIR digital filters". Signal Processing Systems, 2000. SiPS 2000. 2000 IEEE Workshop on: 416–426. doi:10.1109/SIPS.2000.886740. ISBN 978-0-7803-6488-2.