Categorical set theory
From HandWiki
Short description: Sets defined using mathematical category theory
Categorical set theory is any one of several versions of set theory developed from or treated in the context of mathematical category theory.
See also
References
- Barr, M.; Wells, C. (1996). Category Theory for Computing Science (2nd ed.). Prentice Hall. ISBN 978-0-13-323809-9.
- Bourbaki, N. (1994). Elements of the History of Mathematics. Springer. doi:10.1007/978-3-642-61693-8. ISBN 978-3-642-61693-8. https://books.google.com/books?id=4JprCQAAQBAJ&pg=PP7.
- Kelley, J.L. (2017). General Topology. Dover. ISBN 978-0-486-81544-2. https://books.google.com/books?id=DfbODQAAQBAJ&pg=PR8.
- Lambek, J.; Scott, P.J. (1988). Introduction to Higher Order Categorical Logic. Cambridge studies in advanced mathematics. 7. Cambridge University Press. ISBN 978-0-521-35653-4. https://books.google.com/books?id=6PY_emBeGjUC&pg=PR5.
- Lawvere, F.W.; Rosebrugh, R. (2003). Sets for Mathematics. Cambridge University Press. ISBN 978-0-521-01060-3. https://books.google.com/books?id=h3_7aZz9ZMoC&pg=PP1.
- Lawvere, F.W.; Schanuel, S.H. (2009). Conceptual Mathematics: A First Introduction to Categories (2nd ed.). Cambridge University Press. ISBN 978-1-139-64396-2. https://books.google.com/books?id=6G0gAwAAQBAJ&pg=PR7.
- Kiyosi Itô, ed (2000). Encyclopedic Dictionary of Mathematics (2nd ed.). MIT Press. ISBN 0-262-59020-4. https://books.google.com/books?id=WHjO9K6xEm4C&pg=PR5.
- Mitchell, J.C. (1996). Foundations for Programming Languages. MIT Press. ISBN 978-0-585-03789-9. OCLC 48138995. https://archive.org/details/foundationsforpr0000mitc.
- Nestruev, J. (2003). Smooth Manifolds and Observables. Springer. ISBN 0-387-95543-7. https://books.google.com/books?id=vTrhBwAAQBAJ&pg=PR12.
- Poizat, B. (2012). A Course in Model Theory: An Introduction to Contemporary Mathematical Logic. Springer. ISBN 978-1-4419-8622-1. https://books.google.com/books?id=_WXgBwAAQBAJ&pg=PR16.
External links
- Leinster, Tom (2014). "Rethinking set theory". American Mathematical Monthly 121 (5): 403–415. doi:10.4169/amer.math.monthly.121.05.403.
Original source: https://en.wikipedia.org/wiki/Categorical set theory.
Read more |