Chemistry:Hydrolysis constant
The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.
Metal hydrolysis and associated equilibrium constant values
The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:
- p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+
and the corresponding formation constant as:
- [math]\displaystyle{ \beta_{pq} = \frac{[M_p(OH)_q^{(pz-q)}][H^+]^q}{[M^{z+}]^p} }[/math]
and associated equilibria can be written as:
- MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O
- MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH−
- p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O
Aluminium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[1] | Brown and Ekberg, 2016[2] | Hummel and Thoenen, 2023[3] |
---|---|---|---|
Al3+ + H2O ⇌ AlOH2+ + H+ | –4.97 | −4.98 ± 0.02 | −4.98 ± 0.02 |
Al3+ + 2 H2O ⇌ Al(OH)2+ + 2 H+ | –9.3 | −10.63 ± 0.09 | −10.63 ± 0.09 |
Al3+ + 3 H2O ⇌ Al(OH)3 + 3 H+ | –15.0 | −15.66 ± 0.23 | −15.99 ± 0.23 |
Al3+ + 4 H2O ⇌ Al(OH)4– + 4 H+ | –23.0 | −22.91 ± 0.10 | −22.91 ± 0.10 |
2 Al3+ + 2 H2O ⇌ Al2(OH)24+ + 2 H+ | –7.7 | −7.62 ± 0.11 | −7.62 ± 0.11 |
3 Al3+ + 4 H2O ⇌ Al3(OH)45+ + 4 H+ | –13.94 | −14.06 ± 0.22 | −13.90 ± 0.12 |
13 Al3+ + 28 H2O ⇌ Al13O4(OH)247+ + 32 H+ | –98.73 | −100.03 ± 0.09 | −100.03 ± 0.09 |
α-Al(OH)3(s) + 3 H+ ⇌ Al3+ + 3 H2O | 8.5 | 7.75 ± 0.08 | 7.75 ± 0.08 |
γ-AlOOH(s) + 3 H+ ⇌ Al3+ + 3 H2O | 7.69 ± 0.15 | 9.4 ± 0.4 |
Americium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | NIST46[4] | Brown and Ekberg, 2016[5] | Grenthe et al, 2020[6] |
---|---|---|---|
Am3+ + H2O ⇌ Am(OH)2+ + H+ | –6.5 ± 0.1 | –7.22 ± 0.03 | –7.2 ± 0.5 |
Am3+ + 2 H2O ⇌ Am(OH)2+ + 2 H+ | –14.1 ± 0.3 | –14.9 ± 0.2 | –15.1 ± 0.7 |
Am3+ + 3 H2O ⇌ Am(OH)3 + 3 H+ | –25.7 | –26.0 ± 0.2 | –26.2 ± 0.5 |
Am3+ + 3 H2O ⇌ Am(OH)3(am) + 3 H+ | –16.9 ± 0.1 | –16.9 ± 0.8 | –16.9 ± 0.8 |
Am3+ + 3 H2O ⇌ Am(OH)3(cr) + 3 H+ | –15.2 | –15.62 ± 0.04 | –15.6 ± 0.6 |
Americium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[7] | Grenthe et al, 2020[6] |
---|---|---|
AmO2+ + H2O ⇌ AmO2(OH) + H+ | –10.7 ± 0.2 | |
AmO2+ + 2 H2O ⇌ AmO2(OH)2– + 2 H+ | –22.9 ± 0.7 | |
AmO2+ + H2O ⇌ AmO2(OH)(am) + H+ | –5.4 ± 0.4 | –5.3 ± 0.5 |
Antimony(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[8] | Lothenbach et al., 1999;[9]
Kitamura et al., 2010[10] |
Filella and May, 2003[11] |
---|---|---|---|
Sb(OH)3 + H+ ⇌ Sb(OH)2+ + H2O | 1.41 | 1.30 | 1.371 |
Sb(OH)3 + H2O ⇌ Sb(OH)4‒ + H+ | ‒11.82 | ‒11.93 | ‒11.70 |
0.5 Sb2O3(s) + 1.5 H2O ⇌ Sb(OH)3 | ‒4.24 | ||
Sb2O3(rhombic,s) + 3 H2O ⇌ 2 Sb(OH)3 | ‒8.72 | ‒10.00 | |
Sb2O3(cubic,s) + 3 H2O ⇌ 2 Sb(OH)3 | ‒11.40 |
Antimony(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[8] | Lothenbach et al., 1999;[9] Kitamura et al., 2010[10] |
---|---|---|
Sb(OH)5 + H2O ⇌ Sb(OH)6‒ + H+ | ‒2.72 | ‒2.72 |
12 Sb(OH)5 + 4 H2O ⇌ Sb12(OH)644‒ + 4 H+ | 20.34 | 20.34 |
12 Sb(OH)5 + 5 H2O ⇌ Sb12(OH)655‒ + 5 H+ | 16.72 | 16.72 |
12 Sb(OH)5 + 6 H2O ⇌ Sb12(OH)666‒ + 6 H+ | 11.89 | 11.89 |
12 Sb(OH)5 + 7 H2O ⇌ Sb12(OH)677‒ + 7 H+ | 6.07 | 6.07 |
0.5 Sb2O5(s) + 2.5 H2O ⇌ Sb(OH)5 | ‒3.7 | |
Sb2O5(am) + 5 H2O ⇌ 2 Sb(OH)5 | ‒7.400 |
Arsenic(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[12] | Nordstrom and Archer, 2003[13] | Nordstrom et al., 2014[14] |
---|---|---|---|
As(OH)4‒ + H+ ⇌ As(OH)3 + H2O | 9.29 | 9.17 | 9.24 ± 0.02 |
Arsenic(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer[12] | Khodakovsky et al. (1968)[15] | Nordstrom and Archer, 2003[13] | Nordstrom et al., 2014[14] |
---|---|---|---|---|
H2AsO4‒ + H+ ⇌ H3AsO4 | 2.24 | 2.21 | 2.26 ± 0.078 | 2.25 ± 0.04 |
HAsO42‒ + H+ ⇌ H2AsO4‒ | 6.93 | 6.99 ± 0.1 | 6.98 ± 0.11 | |
AsO43‒ + H+ ⇌ HAsO42‒ | 11.51 | 11.80 ± 0.1 | 11.58 ± 0.05 | |
HAsO42‒ + 2 H+ ⇌H3AsO4 | 9.20 | |||
AsO43‒ + 3 H+ ⇌ H3AsO4 | 20.70 |
Barium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[16] | Nordstrom et al., 1990[17] | Brown and Ekberg, 2016[18] |
---|---|---|---|
Ba2+ + H2O ⇌ BaOH+ + H+ | –13.47 | –13.47 | –13.32 ± 0.07 |
Berkelium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[19] |
---|---|
Bk3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ | –13.5 ± 1.0 |
Beryllium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[20] |
---|---|
Be2+ + H2O ⇌ BeOH+ + H+ | –5.10 |
Be2+ + 2 H2O ⇌ Be(OH)2 + 2 H+ | –23.65 |
Be2+ + 3 H2O ⇌ Be(OH)3– + 3 H+ | –23.25 |
Be2+ + 4 H2O ⇌ Be(OH)42– + 4 H+ | –37.42 |
2 Be2+ + H2O ⇌ Be2OH3+ + H+ | –3.97 |
3 Be2+ + 3 H2O ⇌ Be3(OH)33+ + 3 H+ | –8.92 |
6 Be2+ + 8 H2O ⇌ Be6(OH)84+ + 8 H+ | –27.2 |
α-Be(OH)2(cr) + 2 H+ ⇌ Be2+ + 2 H2O | 6.69 |
Bismuth
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[21] | Lothenbach et
al., 1999[9] |
NIST46[4] | Kitamura et
al., 2010[10] |
Brown and
Ekberg, 2016[22] |
---|---|---|---|---|---|
Bi3+ + H2O ⇌ BiOH2+ + H+ | –1.0 | –0.92 | –1.1 | –0.920 | –0.92 ± 0.15 |
Bi3+ + 2 H2O ⇌ Bi(OH)2+ + 2 H+ | (–4) | –2.56 | –4.5 | –2.560 ± 1.000 | –2.59 ± 0.26 |
Bi3+ + 3 H2O ⇌ Bi(OH)3 + 3 H+ | –8.86 | –5.31 | –9.0 | –8.940 ± 0.500 | –8.78 ± 0.20 |
Bi3+ + 4 H2O ⇌ Bi(OH)4– + 4 H+ | –21.8 | –18.71 | –21.2 | –21.660 ± 0.870 | –22.06 ± 0.14 |
3 Bi3+ + 4 H2O ⇌ Bi3(OH)45+ + 4 H+ | –0.80 | –0.800 | |||
6 Bi3+ + 12 H2O ⇌ Bi6(OH)126+ + 12 H+ | 1.34 | 1.340 | 0.98 ± 0.13 | ||
9 Bi3+ + 20 H2O = Bi9(OH)207+ + 20 H+ | –1.36 | –1.360 | |||
9 Bi3+ + 21 H2O = Bi9(OH)216+ + 21 H+ | –3.25 | –3.250 | |||
9 Bi3+ + 22 H2O = Bi9(OH)225+ + 22 H+ | –4.86 | –4.860 | |||
Bi(OH)3(am) + 3 H+ = Bi3+ + 3 H2O | 31.501 ± 0.927 | ||||
α-Bi2O3(cr) + 6 H+ = 2 Bi3+ + 3 H2O | 0.76 | ||||
BiO1.5(s, α) + 3 H+ = Bi3+ + 1.5 H2O | 3.46 | 31.501 ± 0.927 | 2.88 ± 0.64 |
Boron
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[23] | NIST46[4] |
---|---|---|
B(OH)3 + H2O ⇌ Be(OH)4+ + H+ | –9.236 | –9.236 ± 0.002 |
2 B(OH)3 ⇌ B2(OH)5– + H+ | –9.36 | –9.306 |
3 B(OH)3 ⇌ B3O3(OH)4– + H+ + 2 H2O | –7.03 | –7.306 |
4 B(OH)3 ⇌ B4O5(OH)42– + 2 H+ + 3 H2O | –16.3 | –15.032 |
Cadmium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[24] | Powell et al., 2011[25] | Brown and Ekberg, 2016[26] |
---|---|---|---|
Cd2+ + H2O ⇌ CdOH+ + H+ | −10.08 | –9.80 ± 0.10 | −9.81 ± 0.10 |
Cd2+ + 2 H2O ⇌ Cd(OH)2 + 2 H+ | –20.35 | –20.19 ± 0.13 | −20.6 ± 0.4 |
Cd2+ + 3 H2O ⇌ Cd(OH)3– + 3 H+ | <–33.3 | –33.5 ± 0.5 | −33.5 ± 0.5 |
Cd2+ + 4 H2O ⇌ Cd(OH)42– + 4 H+ | –47.35 | –47.28 ± 0.15 | −47.25 ± 0.15 |
2 Cd2+ + H2O ⇌ Cd2OH3+ + H+ | –9.390 | –8.73 ± 0.01 | −8.74 ± 0.10 |
4 Cd2+ + 4 H2O ⇌ Cd4(OH)44+ + H+ | –32.85 | ||
Cd(OH)2(s) ⇌ Cd2+ + 2 OH– | –14.28 ± 0.12 | ||
Cd(OH)2(s) + 2 H+ ⇌ Cd2+ + 2 H2O | 13.65 | 13.72 ± 0.12 | 13.71 ± 0.12 |
Calcium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[16] | Nordstrom et al., 1990[17] | Brown and Ekberg, 2016[27] |
---|---|---|---|
Ca2+ + H2O ⇌ CaOH+ + H+ | –12.85 | –12.78 | –12.57 ± 0.03 |
Ca(OH)2(cr) + 2 H+ ⇌ Ca2+ + 2 H2O | 22.80 | 22.8 | 22.75 ± 0.02 |
Californium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[19] |
---|---|
Cf3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ | –13.0 ± 1.0 |
Cerium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | NIST46[4] | Brown and Ekberg, 2016[29] |
---|---|---|---|
Ce3+ + H2O ⇌ CeOH2+ + H+ | –8.3 | –8.3 | –8.31 ± 0.03 |
2 Ce3+ + 2 H2O ⇌ Ce2(OH)24+ + 2 H+ | –16.0 ± 0.2 | ||
3 Ce3+ + 5 H2O ⇌ Ce3(OH)54+ + 5 H+ | –34.6 ± 0.3 | ||
Ce(OH)3(s) + 3 H+ ⇌ Ce3+ + 3 H2O | 18.5 ± 0.5 | ||
Ce(OH)3(s) ⇌ Ce3+ + 3 OH– | –22.1 ± 0.9 |
Chromium(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):
Reaction | NIST46[4] | Ball and Nordstrom, 1988[30] |
---|---|---|
Cr2+ + H2O ⇌ CrOH+ + H+ | –5.5 | |
Cr(OH)2(s) ⇌ Cr2+ + 2 OH– | –17 ± 0.02 |
Chromium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[31] | Rai et al., 1987[32] | Ball and Nordstrom, 1988[30] | Brown and Ekberg, 2016[33] |
---|---|---|---|---|
Cr3+ + H2O ⇌ CrOH2+ + H+ | –4.0 | –3.57 ± 0.08 | –3.60 ± 0.07 | |
Cr3+ + 2 H2O ⇌ Cr(OH)2+ + 2 H+ | –9.7 | –9.84 | –9.65 ± 0.20 | |
Cr3+ + 3 H2O ⇌ Cr(OH)3 + 3 H+ | –18 | –16.19 | –16.25 ± 0.19 | |
Cr3+ + 4 H2O ⇌ Cr(OH)4- + 4 H+ | –27.4 | –27.65 ± 0.12 | –27.56 ± 0.21 | |
2 Cr3+ + 2 H2O ⇌ Cr2(OH)24+ + 2 H+ | –5.06 | –5.0 | –5.29 ± 0.16 | |
3 Cr3+ + 4 H2O ⇌ Cr3(OH)45+ + 4 H+ | –8.15 | –10.75 ± 0.15 | –9.10 ± 0.14 | |
Cr(OH)3(s) + 3 H+ ⇌ Cr3+ + 3 H2O | 12 | 9.35 | 9.41 ± 0.17 | |
Cr2O3(s) + 6 H+ ⇌ 2 Cr3+ + 3 H2O | 8.52 | |||
CrO1.5(s) + 3 H+ ⇌ Cr3+ + 1.5 H2O | 7.83 ± 0.10 |
Chromium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[34] | Ball and Nordstrom, 1998[30] |
---|---|---|
CrO42– + H+ ⇌ HCrO4– | 6.51 | 6.55 ± 0.04 |
HCrO4– + H+ ⇌ H2CrO4 | –0.20 | |
CrO42– + 2 H+ ⇌ H2CrO4 | 6.31 | |
2 HCrO4– ⇌ Cr2O72– + H2O | 1.523 | |
2 CrO42– + 2 H+ ⇌ Cr2O72– + H2O | 14.7 ± 0.1 |
Cobalt(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[35] | Brown and Ekberg, 2016[36] |
---|---|---|
Co2+ + H2O ⇌ CoOH+ + H+ | –9.65 | −9.61 ± 0.17 |
Co2+ + 2 H2O ⇌ Co(OH)2 + 2 H+ | –18.8 | −19.77 ± 0.11 |
Co2+ + 3 H2O ⇌ Co(OH)3– + 3 H+ | –31.5 | −32.01 ± 0.33 |
Co2+ + 4 H2O ⇌ Co(OH)42– + 4 H+ | –46.3 | |
2 Co2+ + H2O ⇌ Co2(OH)3+ + H+ | –11.2 | |
4 Co2+ + 4 H2O ⇌ Co4(OH)44+ + 4H+ | –30.53 | |
Co(OH)2(s) + 2 H+ ⇌ Co2+ + 2 H2O | 12.3 | 13.24 ± 0.12 |
CoO(s) + 2 H+ ⇌ Co2+ + H2O | 13.71 ± 0.10 |
Cobalt(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[37] |
---|---|
Co3+ + H2O ⇌ CoOH2+ + H+ | −1.07 ± 0.11 |
Copper(I)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[38] |
---|---|
Cu+ + H2O ⇌ CuOH + H+ | –7.8 ± 0.4 |
Cu+ + 2 H2O ⇌ Cu(OH)2– + 2 H+ | –18.6 ± 0.6 |
Copper(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[39] | NIST46[4] | Plyasunova et al., 1997[40] | Powell et al., 2007[41] | Brown and Ekberg, 2016[38] |
---|---|---|---|---|---|
Cu2+ + H2O ⇌ CuOH+ + H+ | < –8 | –7.7 | –7.97 ± 0.09 | –7.95 ± 0.16 | –7.64 ± 0.17 |
Cu2+ + 2 H2O ⇌ Cu(OH)2 + 2 H+ | (< –17.3) | –17.3 | –16.23 ± 0.15 | –16.2 ± 0.2 | –16.24 ± 0.03 |
Cu2+ + 3 H2O ⇌ Cu(OH)3– + 3 H+ | (< –27.8) | –27.8 | –26.63 ± 0.40 | –26.60 ± 0.09 | –26.65 ± 0.13 |
Cu2+ + 4 H2O ⇌ Cu(OH)42– + 4 H+ | –39.6 | –39.6 | –39.73 ± 0.17 | –39.74 ± 0.18 | –39.70 ± 0.19 |
2 Cu2+ + H2O ⇌ Cu2(OH)3+ + H+ | –6.71 ± 0.30 | –6.40 ± 0.12 | –6.41 ± 0.17 | ||
2 Cu2+ + 2 H2O ⇌ Cu2(OH)22+ + 2 H+ | –10.36 | –10.3 | –10.55 ± 0.17 | –10.43 ± 0.07 | –10.55 ± 0.02 |
3 Cu2+ + 4 H2O ⇌ Cu3(OH)42+ + 4 H+ | –20.95 ± 0.30 | –21.1 ± 0.2 | –21.2 ± 0.4 | ||
CuO(s) + 2 H+ ⇌ Cu2+ + H2O | 7.62 | 7.64 ± 0.06 | 7.64 ± 0.06 | 7.63 ± 0.05 | |
Cu(OH)2(s) + 2 H+ ⇌ Cu2+ + 2 H2O | 8.67 ± 0.05 | 8.68 ± 0.10 |
Curium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[42] |
---|---|
Cm3+ + H2O ⇌ Cm(OH)2+ + H+ | −7.66 ± 0.07 |
Cm3+ + 2 H2O ⇌ Cm(OH)2+ + 2 H+ | −15.9 ± 0.1 |
Cm3+ + 3 H2O ⇌ Cm(OH)3(s) + 3 H+ | −13.9 ± 0.4 |
Dysprosium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | Brown and Ekberg, 2016[43] |
---|---|---|
Dy3+ + H2O ⇌ DyOH2+ + H+ | −8.0 | −7.53 ± 0.14 |
Dy3+ + 2 H2O ⇌ Dy(OH)2+ + 2 H+ | (–16.2) | |
Dy3+ + 3 H2O ⇌ Dy(OH)3 + 3 H+ | (–24.7) | |
Dy3+ + 4 H2O ⇌ Dy(OH)4− + 4 H+ | –33.5 | |
2 Dy3+ + 2 H2O ⇌ Dy2(OH)24+ + 2 H+ | −13.76 ± 0.20 | |
3 Dy3+ + 5 H2O ⇌ Dy3(OH)54+ + 5 H+ | −30.6 ± 0.3 | |
Dy(OH)3(s) + 3 H+ ⇌ Dy3+ + 3 H2O | 15.9 | 16.26 ± 0.30 |
Dy(OH)3(c) + OH− ⇌ Dy(OH)4− | −3.6 | |
Dy(OH)3(c) ⇌ Dy(OH)3 | −8.8 |
Erbium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | Brown and Ekberg, 2016[44] |
---|---|---|
Er3+ + H2O ⇌ ErOH2+ + H+ | −7.9 | −7.46 ± 0.09 |
Er3+ + 2 H2O ⇌ Er(OH)2+ + 2 H+ | (−15.9) | |
Er3+ + 3 H2O ⇌ Er(OH)3 + 3 H+ | (−24.2) | |
Er3+ + 4 H2O ⇌ Er(OH)4− + 4 H+ | −32.6 | |
2 Er3+ + 2 H2O ⇌ Er2(OH)24+ + 2 H+ | −13.65 | −13.50 ± 0.20 |
3 Er3+ + 5 H2O ⇌ Er3(OH)54+ + 5 H+ | <−29.3 | −31.0 ± 0.3 |
Er(OH)3(s) + 3 H+ ⇌ Er3+ + 3 H2O | 15.0 | 15.79 ± 0.30 |
Er(OH)3(c) + OH− ⇌ Er(OH)4− | −3.6 | |
Er(OH)3(c) ⇌ Er(OH)3 | ~ −9.2 |
Europium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | NIST46[4] | Hummel et al., 2002[45] | Brown and Ekberg, 2016[29] |
---|---|---|---|---|
Eu3+ + H2O ⇌ EuOH2+ + H+ | –7.8 | –7.64 ± 0.04 | –7.66 ± 0.05 | |
Eu3+ + 2 H2O ⇌ Eu(OH)2+ + 2 H+ | –15.1 ± 0.2 | |||
Eu3+ + 3 H2O ⇌ Eu(OH)3 + 3 H+ | –23.7 ± 0.1 | |||
Eu3+ + 4 H2O ⇌ Eu(OH)4− + 4 H+ | –36.2 ± 0.5 | |||
2 Eu3+ + 2 H2O ⇌ Eu2(OH)24+ + 2 H+ | - | –14.1 ± 0.2 | ||
3 Eu3+ + 5 H2O ⇌ Eu3(OH)54+ + 5 H+ | - | –32.0 ± 0.3 | ||
Eu(OH)3(s) + 3 H+ ⇌ Eu3+ + 3 H2O | 17.5 | 17.6 ± 0.8 (am)
14.9 ± 0.3 (cr) |
16.48 ± 0.30 | |
Eu(OH)3(s) ⇌ Eu3+ + 3 OH– | –24.5 ± 0.7 (am)
–26.5 (cr) |
Gadolinium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[46] | Brown and Ekberg, 2016[47] |
---|---|---|
Gd3+ + H2O ⇌ GdOH2+ + H+ | –8.0 | –7.87 ± 0.05 |
Gd3+ + 2 H2O ⇌ Gd(OH)2+ + 2 H+ | (–16.4) | |
Gd3+ + 3 H2O ⇌ Gd(OH)3 + 3 H+ | (–25.2) | |
Gd3+ + 4 H2O ⇌ Gd(OH)4– + 4 H+ | –34.4 | |
2 Gd3+ + 2 H2O ⇌ Gd2(OH)24+ + 2 H+ | –14.16 ± 0.20 | |
3 Gd3+ + 5 H2O ⇌ Gd3(OH)54+ + 5 H+ | –33.0 ± 0.3 | |
Gd(OH)3(s) + 3 H+ ⇌ Gd3+ + 3 H2O | 15.6 | 17.20 ± 0.48 |
Gd(OH)3(c) + OH– ⇌ Gd(OH)4– | –4.8 | |
Gd(OH)3(c) ⇌ Gd(OH)3 | –9.6 |
Gallium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[48] | Smith et al., 2003[49] | Brown and Ekberg, 2016[50] |
---|---|---|---|
Ga3+ + H2O ⇌ GaOH2+ + H+ | –2.6 | –2.897 | –2.74 |
Ga3+ + 2 H2O ⇌ Ga(OH)2+ + 2 H+ | –5.9 | –6.694 | –7.0 |
Ga3+ + 3 H2O ⇌ Ga(OH)3 + 3 H+ | –10.3 | –11.96 | |
Ga3+ + 4 H2O ⇌ Ga(OH)4– + 4 H+ | –16.6 | –16.588 | –15.52 |
Ga(OH)3(s) ⇌ Ga3+ + 3 OH– | [math]\displaystyle{ \approx }[/math]–37 | –37.0 | |
GaO(OH)(s) + H2O ⇌ Ga3+ + 3 OH– | –39.06 | –39.1 | –40.51 |
Germanium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[51] | Wood and Samson, 2006[52] | Filella and May, 2023[53] |
---|---|---|---|
Ge(OH)4 ⇌ GeO(OH)3- + H+ | –9.31 | –9.32 ± 0.05 | –9.099 |
Ge(OH)4 ⇌ GeO2(OH)22+ + 2 H+ | –21.9 | ||
GeO2(OH)22– + H+ ⇌ GeO(OH)3– | 12.76 | ||
8 Ge(OH)4 ⇌ Ge8O16(OH)33- + 13 H2O + 3 H+ | –14.24 | ||
8 Ge(OH)4 + 3 OH– ⇌ Ge8(OH)353– | 28.33 | ||
GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4 | –1.35 | –1.373 | |
GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4 | -4.37 | –5.02 | –4.999 |
Gold(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[54] |
---|---|
Au(OH)3 +2 H+ ⇌ AuOH2+ + 2 H2O | 1.51 |
Au(OH)3 + H+ ⇌ Au(OH)2+ + H2O | < 1.0 |
Au(OH)3 + H2O ⇌ Au(OH)4– + H+ | –11.77 |
Au(OH)3 + 2 H2O ⇌ Au(OH)52– + 2 H+ | –25.13 |
Au(OH)52– + 3 H2O ⇌ Au(OH)63– + 3 H+ | < –41.1 |
Au(OH)3(c) ⇌ Au(OH)3 | –5.51 |
Hafnium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[55] | Brown and Ekberg, 2016[56] |
---|---|---|
Hf4+ + H2O ⇌ HfOH3+ + H+ | –0.25 | −0.26 ± 0.10 |
Hf4+ + 2 H2O ⇌ Hf(OH)22+ + 2 H+ | (–2.4) | |
Hf4+ + 3 H2O ⇌ Hf(OH)3+ + 3 H+ | (–6.0) | |
Hf4+ + 4 H2O ⇌ Hf(OH)4 + 4 H+ | –10.7* | −3.75 ± 0.34* |
Hf4+ + 5 H2O ⇌ Hf(OH)5– + 5 H+ | –17.2 | |
3 Hf4+ + 4 H2O ⇌ Hf3(OH)48+ + 4 H+ | 0.55 ± 0.30 | |
4 Hf4+ + 8 H2O ⇌ Hf4(OH)88+ + 8 H+ | 6.00 ± 0.30 | |
HfO2(s) + 4 H+ ⇌ Hf4+ + 2 H2O | –1.2* | –5.56 ± 0.15* |
HfO2(am) + 4 H+ ⇌ Hf4+ + 2 H2O | –3.11 ± 0.20 |
*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.
Holmium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | Brown and Ekberg, 2016[57] |
---|---|---|
Ho3+ + H2O ⇌ HoOH2+ + H+ | −8.0 | −7.43 ± 0.05 |
2 Ho3+ + 2 H2O ⇌ Ho2(OH)24+ + 2 H+ | −13.5 ± 0.2 | |
3 Ho3+ + 5 H2O ⇌ Ho3(OH)54+ + 5 H+ | −30.9 ± 0.3 | |
Ho(OH)3(s) + 3 H+ ⇌ Ho3+ + 3 H2O | 15.4 | 15.60 ± 0.30 |
Indium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[58] | NIST46[4] | Brown and Ekberg, 2016[59] |
---|---|---|---|
In3+ + H2O ⇌ InOH2+ + H+ | –4.00 | –3.927 | –3.96 |
In3+ + 2 H2O ⇌ In(OH)2+ + 2 H+ | –7.82 | –7.794 | –9.16 |
In3+ + 3 H2O ⇌ In(OH)3 + 3 H+ | –12.4 | –12.391 | |
In3+ + 4 H2O ⇌ In(OH)4– + 4 H+ | –22.07 | –22.088 | –22.05 |
In(OH)3(s) ⇌ In3+ + 3 OH– | –36.92 | –36.9 | –36.92 |
1/2 In2O3(s) + 3/2 H2O ⇌ In3+ + 3 OH– | –35.24 |
Iridium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[60] |
---|---|
Ir3+ + H2O ⇌ IrOH2+ + H+ | ‒3.77 ± 0.10 |
Ir3+ + 2 H2O ⇌ Ir(OH)2+ + 2 H+ | ‒8.46 ± 0.20 |
Ir(OH)3(s) + 3 H+ ⇌ Ir3+ + 3 H2O | 8.88 ± 0.20 |
Iron(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[61] | Nordstrom et al., 1990[17] | Hummel et al., 2002[45] | Lemire et al., 2013[62] | Brown and Ekberg, 2016[63] |
---|---|---|---|---|---|
Fe2+ + H2O ⇌ FeOH+ + H+ | –9.3 | –9.5 | –9.5 | –9.1 ± 0.4 | −9.43 ± 0.10 |
Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+ | –20.5 | −20.52 ± 0.08 | |||
Fe2+ + 3 H2O ⇌ Fe(OH)3- + 3 H+ | –29.4 | −32.68 ± 0.15 | |||
Fe(OH)2(s) +2 H+ ⇌ Fe2+ + 2 H2O | 12.27 ± 0.88 |
Iron(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[61] | Lemire et al., 2013[62] | Brown and Ekberg, 2016[64] |
---|---|---|---|
Fe3+ + H2O ⇌ FeOH2+ + H+ | –2.19 | −2.15 ± 0.07 | –2.20 ± 0.02 |
Fe3+ + 2 H2O ⇌ Fe(OH)2+ + 2 H+ | –5.67 | −4.8 ± 0.4 | –5.71 ± 0.10 |
Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+ | <–12 | <–14 | –12.42 ± 0.20 |
Fe3+ + 4 H2O ⇌ Fe(OH)4– + 4 H+ | –21.6 | −21.5 ± 0.5 | –21.60 ± 0.23 |
2 Fe3+ + 2 H2O ⇌ Fe2(OH)24+ + 2 H+ | –2.95 | –2.91 ± 0.07 | –2.91 ± 0.07 |
3 Fe3+ + 4 H2O ⇌ Fe3(OH)45+ + 4 H+ | –6.3 | −6.3 ± 0.1 | |
Fe(OH)3(s) +3 H+ ⇌ Fe3+ + 3 H2O
2-line ferrihydrite |
2.5 | 3.5 | 3.50 ± 0.20 |
Fe(OH)3(s) ⇌ Fe3+ + 3 OH−
6-line ferrihydrite |
−38.97 ± 0.64 | ||
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O
goethite |
0.5 | 0.33 ± 0.10 | |
α-FeOOH + H2O ⇌ Fe3+ + 3 OH−
goethite |
−41.83 ± 0.37 | ||
0.5 α-Fe2O3(s)+ 3 H+ ⇌ Fe3+ + 1.5 H2O
hematite |
0.36 ± 0.40 | ||
0.5 α-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH−
hematite |
−42.05 ± 0.26 | ||
0.5 γ-Fe2O3(s) + 3 H+ ⇌ Fe3+ + 1.5 H2O
maghemite |
1.61 ± 0.61 | ||
0.5 γ-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH−
maghemite |
−40.59 ± 0.29 | ||
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O
lepidocrocite |
1.85 ± 0.37 | ||
γ-FeOOH + H2O ⇌ Fe3+ + 3 OH−
lepidocrocite |
−40.13 ± 0.37 | ||
Fe(OH)3(s) + 3 H+ ⇌ Fe3+ + 3 H2O
magnetite |
−12.26 ± 0.26 |
Lanthanum
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[65] | Brown and Ekberg, 2016[66] |
---|---|---|
La3+ + H2O ⇌ LaOH2+ + H+ | –8.5 | –8.89 ± 0.10 |
2 La3+ + 2 H2O ⇌ La2(OH)24+ + 2 H+ | ≤ –17.5 | –17.57 ± 0.20 |
3 La3+ + 5 H2O ⇌ La3(OH)54+ + 5 H+ | ≤ –38.3 | –37.8 ± 0.3 |
5 La3+ + 9 H2O ⇌ La5(OH)96+ + 9 H+ | –71.2 | |
La(OH)3(s) + 3 H+ ⇌ La3+ + 3 H2O | 20.3 | 19.72 ± 0.34 |
Lead(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[67] | NIST46[4] | Powell et al, 2009[68] | Brown and Ekberg, 2016[69] | Cataldo et al., 2018[70] |
---|---|---|---|---|---|
Pb2+ + H2O ⇌ PbOH+ + H+ | –7.71 | –7.6 | –7.46 ± 0.06 | –7.49 ± 0.13 | –6.47± 0.03 |
Pb2+ + 2 H2O ⇌ Pb(OH)2 + 2 H+ | –17.12 | –17.1 | –16.94 ± 0.09 | –16.99 ± 0.06 | –16.12 ± 0.01 |
Pb2+ + 3 H2O ⇌ Pb(OH)3- + 3 H+ | –28.06 | –28.1 | –28.03± 0.06 | –27.94 ± 0.21 | –28.4 ± 0.1 |
Pb2+ + 4 H2O ⇌ Pb(OH)42- + 4 H+ | –40.8 | ||||
2 Pb2+ + H2O ⇌ Pb2(OH)3+ + H+ | –6.36 | –6.4 | –7.28± 0.09 | –6.73 ± 0.31 | |
3 Pb2+ + 4 H2O ⇌ Pb3(OH)42+ + 4 H+ | –23.88 | –23.9 | –23.01 ± 0.07 | –23.43 ± 0.10 | |
3 Pb2+ + 5 H2O ⇌ Pb3(OH)5+ + 5 H+ | –31.11 ± 0.10 | ||||
4 Pb2+ + 4 H2O ⇌ Pb4(OH)44+ + 4 H+ | –20.88 | –20.9 | –20.57± 0.06 | –20.71 ± 0.18 | |
6 Pb2+ + 8 H2O ⇌ Pb6(OH)84+ + 8 H+ | –43.61 | –43.6 | –42.89± 0.07 | –43.27 ± 0.47 | |
PbO(s) + 2 H+ ⇌ Pb2+ + H2O | 12.62 (red)
12.90 (yellow) |
||||
PbO(s) +H2O ⇌ Pb2+ + 2 OH– | –15.28 (red) | -15.3 | –15.3 (red)
–15.1 (yellow) |
–15.37 ± 0.04 (red)
–15.1 ± 0.08 (yellow) |
|
Pb2O(OH)2(s) +H2O ⇌ 2 Pb2+ + 4 OH– | –14.9 | ||||
PbO(s) +H2O ⇌ Pb(OH)2 | –4.4 (red)
–4.2 (yellow) |
||||
Pb2O(OH)2(s) +H2O ⇌ 2 Pb(OH)2 | –4.0 | ||||
PbO(s) + 2 H2O ⇌ Pb(OH)3– + H+ | –1.4 (red)
–1.2 (yellow) |
||||
Pb2O(OH)2(s) + 2 H2O ⇌ 2 Pb(OH)3– + 2 H+ | –1.0 |
Lead(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Feitknecht and Schindler, 1963[71] |
---|---|
β-PbO2 + 2 H2O ⇌ Pb4+ + 4 OH– | –64 |
β-PbO2 + 2 H2O + 2 OH– ⇌ Pb(OH)62– | –4.5 |
Lithium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[72] | Nordstrom et al., 1990[17] | Brown and Ekberg, 2016[73] |
---|---|---|---|
Li+ + H2O ⇌ LiOH + H+ | –13.64 | –13.64 | –13.84 ± 0.14 |
Magnesium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[74] | Nordstrom et al., 1990[17] | Brown and Ekberg, 2016[75] |
---|---|---|---|
Mg2+ + H2O ⇌ MgOH+ + H+ | –11.44 | –11.44 | –11.70 ± 0.04 |
4 Mg2+ + 4 H2O ⇌ Mg4(OH)44+ + 4 H+ | –39.71 | ||
Mg(OH)2(cr) + 2 H+ ⇌ Mg2+ + 2 H2O | 16.84 | 16.84 | 17.11 ± 0.04 |
Manganese(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969[76] | Baes and Mesmer, 1976[77] | Nordstrom et al., 1990[17] | Hummel et al., 2002[45] | Brown and Ekberg, 2016[78] |
---|---|---|---|---|---|
Mn2+ + H2O ⇌ MnOH+ + H+ | –10.59 | –10.59 | –10.59 | –10.59 | −10.58 ± 0.04 |
Mn2+ + 2 H2O ⇌ Mn(OH)2 + 2 H+ | –22.2 | −22.18 ± 0.20 | |||
Mn2+ + 3 H2O ⇌ Mn(OH)3– + 3 H+ | –34.8 | −34.34 ± 0.45 | |||
Mn2+ + 4 H2O ⇌ Mn(OH)42– + 4 H+ | –48.3 | −48.28 ± 0.40 | |||
2 Mn2+ + H2O ⇌ Mn2OH3+ + H+ | –10.56 | ||||
2 Mn2+ + 3 H2O ⇌ Mn2(OH)3+ + 6 H+ | –23.90 | ||||
Mn(OH)2(s) + 2 H+ ⇌ Mn2+ + 2 H2O | 15.2 | 15.2 | 15.2 | 15.19 ± 0.10 | |
MnO(s) + 2 H+ ⇌ Mn2+ + H2O | 17.94 ± 0.12 |
Manganese(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[79] |
---|---|
Mn3+ + H2O ⇌ MnOH2+ + H+ | –11.70 ± 0.04 |
Mercury(I)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[80] | Brown and Ekberg, 2016[81] |
---|---|---|
Hg22+ + H2O ⇌ Hg2OH+ + H+ | −5.0a | −4.45 ± 0.10 |
(a) 0.5 M HClO4
Mercury(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[82] | Powell et all, 2005[83] | Brown and Ekberg, 2016[79] |
---|---|---|---|
Hg2+ + H2O ⇌ HgOH+ + H+ | −3.40 | –3.40 ± 0.08 | –3.40 ± 0.08 |
Hg2+ + 2 H2O ⇌ Hg(OH)2 + 2 H+ | -6.17 | –5.98 ± 0.06 | −5.96 ± 0.07 |
Hg2+ + 3 H2O ⇌ Hg(OH)3– + 3 H+ | –21.1 | –21.1 ± 0.3 | |
HgO(s) + 2 H+ ⇌ Hg2+ + H2O | 2.56 | 2.37 ± 0.08 | 2.37 ± 0.08 |
Molybdenum(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):
Reaction | Baes and Mesmer, 1976[84] | Jolivet, 2000[85] | NIST46[4] | Crea et al., 2017[86] |
---|---|---|---|---|
MoO42– + H+ ⇌ HMoO4– | 3.89a | 4.24 | 4.47 ± 0.02 | |
MoO42– + 2 H+ ⇌ H2MoO4 | 7.50a | 8.12 ± 0.03 | ||
HMoO4– + H+ ⇌ H2MoO4 | 4.0 | |||
Mo7O246– + H+ ⇌ HMo7O245– | 4.4 | |||
HMo7O245– + H+ ⇌ H2Mo7O244– | 3.5 | |||
H2Mo7O244– + H+ ⇌ H3Mo7O243– | 2.5 | |||
7 MoO42-+ 8 H+ ⇌ Mo7O246– + 4 H2O | 57.74a | 52.99b | 51.93 ± 0.04 | |
7 MoO42– + 9 H+ ⇌ Mo7O23(OH)5– + 4 H2O | 62.14a | 58.90 ± 0.02 | ||
7 MoO42– + 10 H+ ⇌ Mo7O22(OH)24– + 4 H2O | 65.68a | 64.63 ± 0.05 | ||
7 MoO42– + 11 H+ ⇌ Mo7O21(OH)33– + 4 H2O | 68.21a | 68.68 ± 0.06 | ||
19 MoO42- + 34 H+ ⇌ Mo19O594– + 17 H2O | 196.3a | 196a | ||
MoO3(s) + H2O ⇌ MoO42– + 2 H+ | –12.06a |
Neodymium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | NIST46[4] | Neck et al., 2009[87] | Brown and Ekberg, 2016[29] |
---|---|---|---|---|
Nd3+ + H2O ⇌ NdOH2+ + H+ | –8.0 | –8.0 | –7.4 ± 0.4 | –8.13 ± 0.05 |
Nd3+ + 2 H2O ⇌ Nd(OH)2+ + 2 H+ | (–16.9) | –15.7 ± 0.7 | ||
Nd3+ + 3 H2O ⇌ Nd(OH)3(aq) + 3 H+ | (–26.5) | –26.2 ± 0.5 | ||
Nd3+ + 4 H2O ⇌ Nd(OH)4− + 4 H+ | (–37.1) | –37.4 | –40.7 ± 0.7 | |
2 Nd3+ + 2 H2O ⇌ Nd2(OH)24+ + 2 H+ | –13.86 | –13.9 | –15.56 ± 0.20 | |
3 Nd3+ + 5 H2O ⇌ Nd3(OH)54+ + 5 H+ | < –28.5 | –34.2 ± 0.3 | ||
Nd(OH)3(s) + 3 H+ ⇌ Nd3+ + 3 H2O | 18.6 | 17.2 ± 0.4 | 17.89 ± 0.09 | |
Nd(OH)3(s) ⇌ Nd3+ + 3 OH– | –23.2 ± 0.9 | –21.5 (act)
–23.1(inact) |
Neptunium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[88] | Grenthe et al, 2020[6] |
---|---|---|
Np3+ + H2O ⇌ NpOH2+ + H+ | -7.3 ± 0.5 | –6.8 ± 0.3 |
Neptunium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[89] | NIST46[4] | Brown and Ekberg, 2016[90] | Grenthe et al, 2020[6] |
---|---|---|---|---|
Np4+ + H2O ⇌ NpOH3+ + H+ | –1.49 | –1.5 | –1.31 ± 0.05 | 0.5 ± 0.2 |
Np4+ + 2 H2O ⇌ Np(OH)22+ + 2 H+ | –3.7 ± 0.3 | 0.3 ± 0.3 | ||
Np4+ + 4 H2O ⇌ Np(OH)4 + 4 H+ | –10.0 ± 0.9 | –8 ± 1 | ||
Np4+ + 4 OH- ⇌ NpO2(am, hyd) + 2 H2O | 52 | 54.9 ± 0.4 | 57.5 ± 0.3 | 56.7 ± 0.5 |
Neptunium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[89] | Brown and Ekberg, 2016[91] | Grenthe et al, 2020[6] |
---|---|---|---|
NpO2+ + + H2O ⇌ NpO2(OH) + H+ | –8.85 | –10.7 ± 0.5 | –11.3 ± 0.7 |
NpO2+ + 2 H2O ⇌ NpO2(OH)2- + 2 H+ | –22.8 ± 0.7 | –23.6 ± 0.5 | |
NpO2+ + H2O ⇌ NpO2(OH)(am, fresh) + H+ | ≤ –4.7 | –5.21 ± 0.05 | –5.3 ± 0.2 |
NpO2+ + H2O ⇌ NpO2(OH)(am, aged) + H+ | –4.53 ± 0.06 | –4.7 ± 0.5 |
Neptunium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer,
1976[92] |
NIST46[4] | Brown and Ekberg,
2016[93] |
Grenthe et
al, 2020[6] |
---|---|---|---|---|
NpO22+ + H2O ⇌ NpO2(OH)+ + H+ | –5.15 | –5.12 | –5.1 ± 0.2 | –5.1 ± 0.4 |
NpO22+ + 3 H2O ⇌ NpO2(OH)3- + 3 H+ | –21 ± 1 | |||
NpO22+ + 4 H2O ⇌ NpO2(OH)42- + 4 H+ | –32 ± 1 | |||
2 NpO22+ + 2 H2O ⇌ (NpO2)2(OH)22+ + 2 H+ | –6.39 | –6.39 | –6.2 ± 0.2 | –6.2 ± 0.2 |
3 NpO22+ + 5 H2O ⇌ (NpO2)3(OH)5+ + 5 H+ | –17.49 | –17.49 | –17.0 ± 0.2 | –17.1 ± 0.2 |
NpO22+ + 2 H2O ⇌ NpO3.H2O(cr) + 2 H+ | ≥-6.6 | –5.4 ± 0.4 | –5.4 ± 0.4 |
Nickel(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Feitknecht and Schindler, 1963[71] | Baes and Messmer, 1976[94] | NIST46[4] | Gamsjäger et al., 2005[95] | Thoenen et al., 2014[96] | Brown and Ekberg, 2016[97] |
---|---|---|---|---|---|---|
Ni2+ + H2O ⇌ NiOH+ + H+ | –9.86 | –9.9 | –9.54 ± 0.14 | –9.54 ± 0.14 | –9.90 ± 0.03 | |
Ni2+ + 2 H2O ⇌ Ni(OH)2 + 2 H+ | –19 | –19 | < –18 | –21.15 ± 0.0 | ||
Ni2+ + 3 H2O ⇌ Ni(OH)3– + 3 H+ | –30 | –30 | –29.2 ± 1.7 | –29.2 ± 1.7 | ||
Ni2+ + 4 H2O ⇌ Ni(OH)42– + 4 H+ | < –44 | |||||
2 Ni2+ + H2O ⇌ Ni2(OH)3+ + H+ | –10.7 | –10.6 ± 1.0 | –10.6 ± 1.0 | –10.6 ± 1.0 | ||
4 Ni2+ + 4 H2O ⇌ Ni4(OH)44+ + 4 H+ | –27.74 | –27.7 | –27.52 ± 0.15 | –27.52 ± 0.15 | –27.9 ± 0.6 | |
β-Ni(OH)2(s) + 2 H+ ⇌ Ni2+ + 2 H2O | 10.8 | 11.02 ± 0.20 | 10.96 ± 0.20
11.75 ± 0.13 (microcr) | |||
Ni(OH)2(s) ⇌ Ni2+ + 2 OH– | –17.2 (inactive) | –17.2 | –16.97± 0.20 (β)
–17.2 ± 1.3 (cr) |
|||
Ni(OH)2(s) + OH– ⇌ Ni(OH)3– | –4.2 (inactive) | |||||
NiO(cr) + 2 H+ ⇌ Ni2+ + H2O | 12.38 ± 0.06 | 12.48 ± 0.15 |
Niobium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[72] | Filella and May, 2020[98] |
---|---|---|
Nb(OH)5 + H+ ⇌ Nb(OH)4+ + H2O | ~ –0.6 | 1.603 |
Nb(OH)5 + H2O ⇌ Nb(OH)6– + H+ | ~ –4.8 | –4.951 |
Nb6O198– + H+ ⇌ HNb6O197– | 14.95 | |
HNb6O197– + H+ ⇌ H2Nb6O196– | 13.23 | |
H2Nb6O196– + H+ ⇌ H3Nb6O195– | 11.73 | |
1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5 | ~ –7.4 | |
Nb(OH)5(am,s) ⇌ Nb(OH)5 | –7.510 | |
Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5 | –18.31 |
Osmium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:
Reaction | Galbács et al., 1983[99] |
---|---|
OsO2(OH)42– + H+ ⇌ HOsO2(OH)4– | 10.4 |
HOsO2(OH)4– + H+ ⇌ H2OsO2(OH)4 | 8.5 |
Osmium(VIII)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Galbács et al., 1983[99] |
---|---|
OsO2(OH)3(O-)aq + H+ ⇌ OsO2(OH)4aq | 12.2a |
OsO2(OH)2(O-)2aq + H+ ⇌ OsO2(OH)3(O-)aq | 14.4b |
(a) At I = 0.1 M (b) At I = 2.5 M
Palladium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969[100] | Hummel et al., 2002[45] | Kitamura and Yul, 2010[101] | Brown and Ekberg, 2016[102] |
---|---|---|---|---|
Pd2+ + H2O ⇌ PdOH+ + H+ | −0.96 | −0.65 ± 0.64 | −1.16 ± 0.30 | |
Pd2+ + 2 H2O ⇌ Pd(OH)2 + 2 H+ | −2.6 | −4 ± 1 | −3.11 ± 0.63 | −3.07 ± 0.16 |
Pd2+ + 3 H2O ⇌ Pd(OH)3− + 3 H+ | −15.5 ± 1 | −14.20 ± 0.63 | ||
Pd(OH)2(am) + 2 H+ ⇌ Pd2+ + 2 H2O | −3.3 ± 1 | −3.4 ± 0.2 |
Plutonium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[103] | NIST46[4] | Brown and Ekberg, 2016[104] | Grenthe et al, 2020[6] |
---|---|---|---|---|
Pu3+ + H2O ⇌ PuOH2+ + H+ | –7.0 | –6.9 ± 0.2 | –6.9 ± 0.3 | |
Pu3+ + 3 H2O ⇌ Pu(OH)3(cr) + 3 H+ | –19.65 | –15.8 ± 0.8 | –15 ± 1 |
Plutonium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[105] | NIST46[4] | Brown and Ekberg, 2016[106] | Grenthe et al, 2020[6] |
---|---|---|---|---|
Pu4+ + H2O ⇌ PuOH 3+ + H+ | –0.5 | –0.5 | –0.7 ± 0.1 | 0.6 ± 0.2 |
Pu4+ + 2 H2O ⇌ Pu(OH)22+ + 2 H+ | (–2.3) | 0.6 ± 0.3 | ||
Pu4+ + 3 H2O ⇌ Pu(OH)3+ + 3 H+ | (–5.3) | –2.3 ± 0.4 | ||
Pu4+ + 4 H2O ⇌ Pu(OH)4 + 4 H+ | –9.5 | –12.5 ± 0.7 | –8.5 ± 0.5 | |
Pu4+ + 4 OH- ⇌ PuO2(am, hyd) + 2 H2O | 49.5 | 47.9 ± 0.4 (0w)
53.8 ± 0.5 (1w) |
58.3 ± 0.5 |
Plutonium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[107] | NIST46[4] | Brown and Ekberg, 2016[108] | Grenthe et al, 2020[6] |
---|---|---|---|---|
PuO2+ + H2O ⇌ PuO2(OH) + H+ | –1.49 | –1.5 | –1.31 ± 0.05 | 0.5 ± 0.2 |
PuO2+ + H2O ⇌ PuO2(OH)(am) + H+ | –3.7 ± 0.3 | 0.3 ± 0.3 |
Plutonium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer,
1976[109] |
NIST46[4] | Brown and Ekberg,
2016[110] |
Grenthe et
al, 2020[6] |
---|---|---|---|---|
PuO22+ + H2O ⇌ PuO2(OH)+ + H+ | –5.6 | –5.6 | –5.36 ± 0.09 | –5.5 ± 0.5 |
PuO22+ + 2 H2O ⇌ PuO2(OH)2 + 2 H+ | –12.9 ± 0.2 | –13 ± 1 | ||
PuO22+ + 3 H2O ⇌ PuO2(OH)3- + 3 H+ | –24 ± 1 | |||
2 PuO22+ + 2 H2O ⇌ (PuO2)2(OH)22+ + 2 H+ | –8.36 | –8.36 | –7.8 ± 0.5 | –7 ± 1 |
3 PuO22+ + 5 H2O ⇌ (PuO2)3(OH)5+ + 5 H+ | –21.65 | –21.65 | ||
PuO22+ + 2 OH- ⇌ PuO2(OH)2(am, hyd) | 22.8 ± 0.6 |
Potassium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[72] | Nordstrom et al., 1990[17] | Brown and Ekberg, 2016[111] |
---|---|---|---|
K+ + H2O ⇌ KOH + H+ | –14.46 | –14.46 | –14.5 ± 0.4 |
Praseodymium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | NIST46[4] | Brown and Ekberg, 2016[29] |
---|---|---|---|
Pr3+ + H2O ⇌ PrOH2+ + H+ | –8.1 | –8.30 ± 0.03 | |
2 Pr3+ + 2 H2O ⇌ Pr2(OH)24+ + 2 H+ | –16.31 ± 0.20 | ||
3 Pr3+ + 5 H2O ⇌ Pr3(OH)54+ + 5 H+ | –35.0 ± 0.3 | ||
Pr(OH)3(s) + 3 H+ ⇌ Pr3+ + 3 H2O | 19.5 | 18.57 ± 0.20 | |
Pr(OH)3(s) ⇌ Pr3+ + 3 OH– | –22.3 ± 1.0 |
Radium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Nordstrom et al., 1990[17] |
---|---|
Ra2+ + H2O ⇌ RaOH+ + H+ | –13.49 |
Rhodium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969[112] | Baes and Mesmer, 1976[113] | Brown and Ekberg[114] |
---|---|---|---|
Rh3+ + H2O ⇌ RhOH2+ + H+ | ‒3.43 | ‒3.4 | ‒3.09 ± 0.1 |
Rh(OH)3(c) + OH‒ ⇌ Rh(OH)4‒ | ‒3.9 |
Samarium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | NIST46[4] | Brown and Ekberg[29] |
---|---|---|---|
Sm3+ + H2O ⇌ SmOH2+ + H+ | –7.9 | –7.9 | –7.84 ± 0.11 |
2 Sm3+ + 2 H2O ⇌ Sm2(OH)24+ + 2 H+ | –14.75 ± 0.20 | ||
3 Sm3+ + 5 H2O ⇌ Sm3(OH)54+ + 5 H+ | –33.9 ± 0.3 | ||
Sm(OH)3(s) + 3H+ ⇌ Sm3+ + 3H2O | 16.5 | 17.19 ± 0.30 | |
Sm(OH)3(s) ⇌ Sm3+ + 3 OH- | –23.9 ± 0.9 (am)
–25.9 (cr) |
Scandium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[115] | Brown and Ekberg, 2016[116] |
---|---|---|
Sc3+ + H2O ⇌ ScOH2+ + H+ | –4.3 | –4.16 ± 0.05 |
Sc3+ + 2 H2O ⇌ Sc(OH)2+ + 2 H+ | –9.7 | –9.71 ± 0.30 |
Sc3+ + 3 H2O ⇌ Sc(OH)3 + 3 H+ | –16.1 | –16.08 ± 0.30 |
Sc3+ + 4 H2O ⇌ Sc(OH)4–+ 4 H+ | –26 | –26.7 ± 0.3 |
2 Sc3+ + 2 H2O ⇌ Sc2(OH)24+ + 2 H+ | –6.0 | –6.02 ± 0.10 |
3 Sc3+ + 5 H2O ⇌ Sc3(OH)54+ + 5 H+ | –16.34 | –16.33 ± 0.10 |
Sc(OH)3(s) + 3 H+ ⇌ Sc3+ + 3 H2O | 9.17 ± 0.30 | |
ScO1.5(s) + 3 H+ ⇌ Sc3+ + 1.5 H2O | 5.53 ± 0.30 | |
ScO(OH)(c) + 3 H+ ⇌ Sc3+ + 2 H2O | 9.4 | |
Sc(OH)3(c) + OH– ⇌ Sc(OH)4 | –3.5 ± 0.2 |
Selenium(–II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Olin et al., 2015[117] | Thoenen et al., 2014[96] |
---|---|---|
H2Se(g) ⇌ H2Se(aq) | –1.10 ± 0.01 | –1.10 ± 0.01 |
H2Se ⇌ HSe– + H+ | –3.85 ± 0.05 | –3.85 ± 0.05 |
HSe– ⇌ Se2– + H+ | –14.91 ± 0.20 |
Selenium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[118] | Olin et al., 2005[117] | Thoenen et al., 2014[96] |
---|---|---|---|
SeO32– + H+ ⇌ HSeO3– | 8.50 | 8.36 ± 0.23 | 8.36 ± 0.23 |
HSeO3– + H+ ⇌ H2SeO3 | 2.75 | 2.64 ± 0.14 | 2.64 ± 0.14 |
Selenium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[119] | Olin et al., 2005[117] | Thoenen et al., 2014[96] |
---|---|---|---|
SeO42‒ + H+ ⇌ HSeO4‒ | 1.360 | 1.75 ± 0.10 | 1.75 ± 0.10 |
Silicon
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[120] | Thoenen et al., 2014[96] |
---|---|---|
Si(OH)4 ⇌ SiO(OH)3– + H+ | –9.86 | –9.81 ± 0.02 |
Si(OH)4 ⇌ SiO2(OH)22– + 2 H+ | –22.92 | –23.14 ± 0.09 |
4 Si(OH)4 ⇌ Si4O6(OH)64– + 2 H+ + 4 H2O | –13.44 | |
4 Si(OH)4 ⇌ Si4O8(OH)44– + 4 H+ + 4 H2O | –35.80 | –36.3 ± 0.2 |
SiO2(quartz) + 2 H2O ⇌ Si(OH)4 | –4.0 | –3.739 ± 0.087 |
SiO2(am) + 2 H2O ⇌ Si(OH)4 | –2.714 |
Silver
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[121] | Brown and Ekberg, 2016[122] |
---|---|---|
Ag+ + H2O ⇌ AgOH + H+ | −12.0 | −11.75 ± 0.14 |
Ag+ + 2 H2O ⇌ Ag(OH)2− + 2 H+ | −24.0 | −24.34 ± 0.14 |
0.5 Ag2O(am) + H+ ⇌ Ag+ + 0.5 H2O | 6.29 | 6.27 ± 0.05 |
Sodium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[72] | Nordstrom et al., 1990[17] | Brown and Ekberg, 2016[123] |
---|---|---|---|
Na+ + H2O ⇌ NaOH + H+ | –14.18 | –14.18 | –14.4 ± 0.2 |
Strontium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[16] | Nordstrom et al., 1990[17] | Brown and Ekberg, 2016[124] |
---|---|---|---|
Sr2+ + H2O ⇌ SrOH+ + H+ | –13.29 | –13.29 | –13.15 ± 0.05 |
Tantalum
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[125] | Filella and May, 2019a[126] |
---|---|---|
Ta(OH)5 + H+ ⇌ Ta(OH)4+ + H2O | ~1 | 0.7007 |
Ta(OH)5 + H2O ⇌ Ta(OH)6– + H+ | ~ –9.6 | |
Ta6O198– + H+ ⇌ HTa6O197– | 16.35 | |
HTa6O197– + H+ ⇌ H2Ta6O196– | 14.00 | |
1/2 Ta2O5(act) + 5/2 H2O ⇌ Ta(OH)5 | ~ –5.2 | |
Ta(OH)5(s) ⇌ Ta(OH)5 | –5.295 | |
Ta2O5(s) + 5 H2O ⇌ 2 Ta(OH)5 | –20.00 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(-II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Filella and May, 2019a[127] |
---|---|
Te2‒ + H+ ⇌ HTe‒ | 11.81 |
HTe‒ + H+ ⇌ H2Te | 2.476 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[128] | Filella and May, 2019a[127] |
---|---|---|
TeO32‒ + H+ ⇌ HTeO3‒ | 9.928 | |
HTeO3‒ + H+ ⇌ H2TeO3 | 6.445 | |
H2TeO3 ⇌ HTeO3‒ + H+ | ‒2.68 | |
H2TeO3 ⇌ TeO32‒ + 2 H+ | ‒12.5 | |
H2TeO3 + H+ ⇌ Te(OH)3+ | 3.13 | 2.415 |
TeO2(s) + H2O ⇌ H2TeO3 | ‒4.709 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[128] | Filella and May, 2019a[127] |
---|---|---|
TeO2(OH)42‒ + H+ ⇌ TeO(OH)5‒ | 10.83 | |
TeO(OH)5‒ + H+ ⇌ Te(OH)6 | 7.68 | 7.696 |
TeO2(OH)42‒ + 2 H+ ⇌ Te(OH)6 | 18.68 | |
TeO3(OH)33‒ + 3 H+ ⇌ Te(OH)6 | 34.3 | |
2 Te(OH)6 ⇌ Te2O(OH)11‒ + H+ | ‒6.929 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Terbium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | Brown and Ekberg, 2016[129] |
---|---|---|
Tb3+ + H2O ⇌ TbOH2+ + H+ | −7.9 | −7.60 ± 0.09 |
2 Tb3+ + 2 H2O ⇌ Tb2(OH)24+ + 2 H+ | −13.9 ± 0.2 | |
3 Tb3+ + 5 H2O ⇌ Tb3(OH)54+ + 5 H+ | −31.7 ± 0.3 | |
Tb(OH)3(s) + 3 H+ ⇌ Tb3+ + 3 H2O | 16.5 | 16.33 ± 0.30 |
Thallium(I)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[130] | Brown and Ekberg, 2016[131] |
---|---|---|
Tl+ + H2O ⇌ TlOH + H+ | –13.21 | |
Tl+ + OH– ⇌ TlOH | 0.64 ± 0.05 | |
Tl+ + 2 OH– ⇌ Tl(OH)2– | –0.7 ± 0.7 | |
½ Tl2O(s) + H+ ⇌ Tl+ + ½ H2O | 13.55 ± 0.20 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Thallium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[130] | Brown and Ekberg, 2016[131] |
---|---|---|
Tl3+ + H2O ⇌ TlOH2+ + H+ | –0.62 | –0.22 ± 0.19 |
Tl3+ + 2 H2O ⇌ Tl(OH)2+ + 2 H+ | –1.57 | |
Tl3+ + 3 H2O ⇌ Tl(OH)3 + 3 H+ | –3.3 | |
Tl3+ + 4 H2O ⇌ Tl(OH)4– + 4 H+ | –15.0 | |
½ Tl2O3(s) + 3 H+ ⇌ Tl3+ + ³⁄₂ H2O | –3.90 | –3.90 ± 0.10 |
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Thorium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer,
1976[132] |
Rand et
al., 2008[133] |
Thoenen et
al, 014[134] |
Brown and Ekberg,
2016[135] |
---|---|---|---|---|
Th4+ + H2O ⇌ ThOH3+ + H+ | –3.20 | –2.5 ± 0.5 | –2.5 ± 0.5 | –2.5 ± 0.5 |
Th4+ + 2 H2O ⇌ Th(OH)22+ + 2 H+ | –6.93 | –6.2 ± 0.5 | –6.2 ± 0.5 | –6.2 ± 0.5 |
Th4+ + 3 H2O ⇌ Th(OH)3+ + 3 H+ | < –11.7 | |||
Th4+ + 4 H2O ⇌ Th(OH)4 + 4 H+ | –15.9 | –17.4 ± 0.7 | –17.4 ± 0.7 | –17.4 ± 0.7 |
2Th4+ + 2 H2O ⇌ Th2(OH)26+ + 2 H+ | –6.14 | –5.9 ± 0.5 | –5.9 ± 0.5 | –5.9 ± 0.5 |
2Th4+ + 3 H2O ⇌ Th2(OH)35+ + 3 H+ | –6.8 ± 0.2 | –6.8 ± 0.2 | –6.8 ± 0.2 | |
4Th4+ + 8 H2O ⇌ Th4(OH)88+ + 8 H+ | –21.1 | –20.4 ± 0.4 | –20.4 ± 0.4 | –20.4 ± 0.4 |
4Th4+ + 12 H2O ⇌ Th4(OH)124+ + 12 H+ | –26.6 ± 0.2 | –26.6 ± 0.2 | –26.6 ± 0.2 | |
6Th4+ + 15 H2O(l) ⇌ Th6(OH)159+ + 15 H+ | –36.76 | –36.8 ± 1.5 | –36.8 ± 1.5 | –36.8 ± 1.5 |
6Th4+ + 14 H2O(l) ⇌ Th6(OH)1410+ + 14 H+ | –36.8 ± 1.2 | –36.8 ± 1.2 | –36.8 ± 1.2 | |
ThO2(c) + 4 H+ ⇌ Th4+ + 2 H2O | 6.3 | |||
ThO2(am) + 4 H+ ⇌ Th4+ + 2 H2O | 8.8 ± 1.0 | |||
ThO2(am,hyd,fresh) + 4 H+ ⇌ Th4+ + 2 H2O | 9.3 ± 0.9 | |||
ThO2(am,hyd,aged) + 4 H+ ⇌ Th4+ + 2 H2O | 8.5 ± 0.9 | |||
Th4+ + 4 OH- ⇌ ThO2(am,hyd,fresh) + 2 H2O | 46.7 ± 0.9 | |||
Th4+ + 4 OH- ⇌ ThO2(am,hyd,aged) + 2 H2O | 47.5 ± 0.9 |
Thulium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | Brown and Ekberg, 2016[136] |
---|---|---|
Tm3+ + H2O ⇌ TmOH2+ + H+ | −7.7 | −7.34 ± 0.09 |
2 Tm3+ + 2 H2O ⇌ Tm2(OH)24+ + 2 H+ | −13.2 ± 0.2 | |
3 Tm3+ + 5 H2O ⇌ Tm3(OH)54+ + 5 H+ | −30.5 ± 0.3 | |
Tm(OH)3(s) + 3 H+ ⇌ Tm3+ + 3 H2O | 15.0 | 15.56 ± 0.40 |
Tin(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Feitknecht, 1963[71] | Baes and Mesmer, 1976[137] | Hummel et al., 2002[45] | NIST46[4] | Cigala et al, 2012[138] | Gamsjäger et al, 2012[139] | Brown and Ekberg, 2016[140] |
---|---|---|---|---|---|---|---|
Sn2+ + H2O ⇌ SnOH+ + H+ | –3.40 | –3.8 ± 0.2 | –3.4 | –3.52 ± 0.05 | –3.53 ± 0.40 | –3.53 ± 0.40 | |
Sn2+ + 2 H2O ⇌ Sn(OH)2 + 2 H+ | –7.06 | –7.7 ± 0.2 | –7.1 | –6.26 ± 0.06 | –7.68 ± 0.40 | –7.68 ± 0.40 | |
Sn2+ + 3 H2O ⇌ Sn(OH)3– + 3 H+ | –16.61 | –17.5 ± 0.2 | –16.6 | –16.97 ± 0.17 | –17.00 ± 0.60 | –17.56 ± 0.40 | |
2 Sn2+ + 2 H2O ⇌ Sn2(OH)22+ + 2 H+ | –4.77 | –4.8 | –4.79 ± 0.05 | ||||
3 Sn2+ + 4 H2O ⇌ Sn3(OH)42+ + 4 H+ | –6.88 | –5.6 ± 1.6 | –6.88 | –5.88 ± 0.05 | –5.60 ± 0.47 | −5.60 ± 0.47 | |
Sn(OH)2(s) ⇌ Sn2+ + 2 OH– | –25.8 | –26.28 ± 0.08 | |||||
SnO(s) + 2 H+ ⇌ Sn2+ + H2O | 1.76 | 2.5± 0.5 | 1.60 ± 0.15 | ||||
SnO(s) + H2O ⇌ Sn2+ + 2 OH– | –26.2 | ||||||
SnO(s) + H2O ⇌ Sn(OH)2 | –5.3 | ||||||
SnO(s) + 2 H2O ⇌ Sn(OH)3– + H+ | –0.9 |
Tin(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Hummel et al., 2002[45] | Gamsjäger et al, 2012[139] | Brown and Ekberg, 2016[140] |
---|---|---|---|
Sn4+ + 4 H2O ⇌ Sn(OH)4 + 4 H+ | 7.53 ± 0.12 | ||
Sn4+ + 5 H2O ⇌ Sn(OH)5– + 5 H+ | –1.07 ± 0.42 | ||
Sn4+ + 6 H2O ⇌ Sn(OH)62– + 6 H+ | –1.07 ± 0.42 | ||
Sn(OH)4 + H2O ⇌ Sn(OH)5– + H+ | –8.0 ± 0.3 | –8.60 ± 0.40 | |
Sn(OH)4 + 2 H2O ⇌ Sn(OH)62– + 2 H+ | –18.4 ± 0.3 | –18.67 ± 0.30 | |
SnO2(cr) + 2 H2O ⇌ Sn(OH)4 | –8.0 ± 0.2 | –8.06 ± 0.11 | |
SnO2(am) + 2 H2O ⇌ Sn(OH)4 | –7.3 ± 0.3 | –7.22 ± 0.08 | |
SnO2(s) + 4 H+ ⇌ Sn4+ + 2 H2O | –15.59 ± 0.04 |
Tungsten
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | NIST46[4] |
---|---|
WO42– + H+ ⇌ HWO4– | 3.6 |
WO42– + 2 H+ ⇌ H2WO4 | 5.8 |
6 WO42– + 7 H+ ⇌ HW6O215– + 3 H2O | 63.83 |
Titanium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Perrin et al., 1969[141] | Baes and Mesmer, 1976[142] | Brown and Ekberg, 2016[143] |
---|---|---|---|
Ti3+ + H2O ⇌ TiOH2+ + H+ | –1.29 | –2.2 | –1.65 ± 0.11 |
2 Ti3+ + 2 H2O ⇌ Ti2(OH)24+ + 2 H+ | –3.6 | –2.64 ± 0.10 |
Titanium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[142] | Brown and Ekberg, 2016[143] |
---|---|---|
Ti(OH)22+ + H2O ⇌ Ti(OH)3+ + H+ | ⩽–2.3 | |
Ti(OH)22+ + 2 H2O ⇌ Ti(OH)4 + 2 H+ | –4.8 | |
TiO2+ + H2O ⇌ TiOOH+ + H+ | –2.48 ± 0.10 | |
TiO2+ + 2 H2O ⇌ TiO(OH)2 + 2 H+ | –5.49 ± 0.14 | |
TiO2+ + 3 H2O ⇌ TiO(OH)3– + 3 H+ | –17.4 ± 0.5 | |
TiO(OH)2 + H2O ⇌ TiO(OH)3– + H+ | –11.9 ±0.5 | |
TiO2(c) +2 H2O ⇌ Ti(OH)4 | ~ –4.8 | |
TiO2(s) + H+ ⇌ TiOOH+ | –6.06 ± 0.30 | |
TiO2(s) + H2O ⇌ TiO(OH)2 | –9.02 ± 0.02 | |
TiO2 x H2O ⇌ Ti(OH)22+[OH–] | ||
TiO2(s) + 4 H+ ⇌ Ti4+ + 2 H2O | –3.56 ± 0.10 |
Uranium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer,
1976[144] |
Thoenen et
al., 2014[145] |
Brown and Ekberg,
2016[146] |
Grenthe et al.,
2020[6] |
---|---|---|---|---|
U4+ + H2O ⇌ UOH3+ + H+ | –0.65 | – 0.54 ± 0.06 | –0.58 ± 0.08 | – 0.54 ± 0.06 |
U4+ + 2 H2O ⇌ U(OH)22+ + 2 H+ | (–2.6) | –1.1 ± 1.0 | –1.4 ± 0.2 | –1.9 ± 0.2 |
U4+ + 3 H2O ⇌ U(OH)3+ + 3 H+ | (–5.8) | –4.7 ± 1.0 | –5.1 ± 0.3 | –5.2 ± 0.4 |
U4+ + 4 H2O ⇌ U(OH)4 + 4 H+ | (–10.3) | –10.0 ± 1.4 | –10.4 ± 0.5 | –10.0 ± 1.4 |
U4+ + 5 H2O ⇌ U(OH)5- + 5 H+ | –16.0 | |||
UO2(am, hyd) + 4 H+ ⇌ U4+ + 2 H2O | 1.5 ± 1.0 | |||
UO2(am,hyd) + 2 H2O ⇌ U4+ + 4 OH– | –54.500 ± 1.000 | –54.500 ± 1.000 | ||
UO2(c) + 4 H+ ⇌ U4+ + 2 H2O | –1.8 | |||
UO2(c) + 2 H2O ⇌ U4+ + 4 OH– | –60.860 ± 1.000 |
Uranium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer,
1976[147] |
Grenthe et
al., 1992[148] |
NIST46[4] | Brown and Ekberg,
2016[149] |
Grenthe et al.,
2020[6] |
---|---|---|---|---|---|
UO22+ + H2O ⇌ UO2(OH)+ + H+ | –5.8 | –5.2 ± 0.3 | –5.9 ± 0.1 | –5.13 ± 0.04 | –5.25 ± 0.24 |
UO22+ + 2 H2O ⇌ UO2(OH)2 + 2 H+ | ≤-10.3 | –12.15 ± 0.20 | –12.15 ± 0.07 | ||
UO22+ + 3 H2O ⇌ UO2(OH)3– + 3 H+ | –19.2 ± 0.4 | –20.25 ± 0.42 | –20.25 ± 0.42 | ||
UO22+ + 4 H2O ⇌ UO2(OH)42– + 4 H+ | –33 ± 2 | –32.40 ± 0.68 | –32.40 ± 0.68 | ||
2 UO22+ + 2 H2O ⇌ (UO2)2(OH)22+ + 2 H+ | –5.62 | –5.62 ± 0.04 | –5.58 ± 0.04 | –5.68 ± 0.05 | –5.62 ± 0.08 |
3 UO22+ + 5 H2O ⇌ (UO2)3(OH)5+ + 5 H+ | –15.63 | –15.55 ± 0.12 | –15.6 | –15.75 ± 0.12 | –15.55 ± 0.12 |
3 UO22+ + 4 H2O ⇌ (UO2)3(OH)42+ + 4 H+ | (–11.75) | –11.9 ± 0.3 | –11.78 ± 0.05 | –11.9 ± 0.3 | |
3 UO22+ + 7 H2O ⇌ (UO2)3(OH)7– + 7 H+ | –31 ± 2.0 | –32.2 ± 0.8 | –32.2 ± 0.8 | ||
4 UO22+ + 7 H2O ⇌ (UO2)4(OH)7+ + 7 H+ | –21.9 ± 1.0 | –22.1 ± 0.2 | –21.9 ± 1.0 | ||
2 UO22+ + H2O ⇌ (UO2)2(OH)3+ + H+ | –2.7 ± 1.0 | –2.7 ± 1.0 | |||
UO2(OH)2(s) + 2H+ ⇌ UO22+ + 2 H2O | 5.6 | 6.0 | 4.81 ± 0.20 | ||
UO3·2H2O(cr) + 2H+ ⇌ UO22+ + 3 H2O | 5.350 ± 0.130 |
Vanadium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Brown and Ekberg, 2016[79] |
---|---|
VO2+ + H2O ⇌ VO(OH)+ + H+ | –5.30 ± 0.13 |
2 VO2+ + 2 H2O ⇌ (VO)2(OH)22+ + 2 H+ | –6.71 ± 0.10 |
Vanadium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[150] | Brown and Ekberg, 2016[151] |
---|---|---|
VO2+ + 2 H2O ⇌ VO(OH)3 + H+ | –3.3 | |
VO2+ + 2 H2O ⇌ VO2(OH)2– + 2 H+ | –7.3 | –7.18 ± 0.12 |
10 VO2+ + 8 H2O ⇌ V10O26(OH)24– + 14 H+ | –10.7 | |
VO2(OH)2– ⇌ VO3(OH)2– + H+ | –8.55 | |
2 VO2(OH)2– ⇌ V2O6(OH)23– + H+ + H2O | –6.53 | |
VO3(OH)2– ⇌ VO43– + H+ | –14.26 | |
2 VO3(OH)2– ⇌ V2O74– + H2O | 0.56 | |
3 VO3(OH)2– + 3 H+⇌ V3O93– + 3 H2O | 31.81 | |
V10O26(OH)24– ⇌ V10O27(OH)5– + 3 H+ | –3.6 | |
V10O27(OH)5– ⇌ V10O286– + H+ | –6.15 | |
VO2+ + H2O ⇌ VO2OH + H+ | –3.25 ± 0.1 | |
VO2+ + 3 H2O ⇌ VO2(OH)32- + 3 H+ | –15.74 ± 0.19 | |
VO2+ + 4 H2O ⇌ VO2(OH)43- + 4 H+ | –30.03 ± 0.24 | |
2 VO2+ + 4 H2O ⇌ (VO2)2(OH)42- + 4 H+ | –11.66 ± 0.53 | |
2 VO2+ + 5 H2O ⇌ (VO2)2(OH)53- + 5 H+ | –20.91 ± 0.22 | |
2 VO2+ + 6 H2O ⇌ (VO2)2(OH)64- + 6 H+ | –32.43 ± 0.30 | |
4 VO2+ + 8 H2O ⇌ (VO2)4(OH)84- + 8 H+ | –20.78 ± 0.33 | |
4 VO2+ + 9 H2O ⇌ (VO2)4(OH)95- + 9 H+ | –31.85 ± 0.26 | |
4 VO2+ + 10 H2O ⇌ (VO2)4(OH)106- + 10 H+ | –45.85 ± 0.26 | |
5 VO2+ + 10 H2O ⇌ (VO2)5(OH)105- + 10 H+ | –27.02 ± 0.34 | |
10 VO2+ + 14 H2O ⇌ (VO2)10(OH)144- + 14 H+ | –10.5 ± 0.3 | |
10 VO2+ + 15 H2O ⇌ (VO2)10(OH)155- + 15 H+ | –15.73 ± 0.33 | |
10 VO2+ + 16 H2O ⇌ (VO2)10(OH)166- + 16 H+ | –23.90 ± 0.35 | |
½ V2O5(c) + H+ ⇌ VO2+ + ½ H2O | –0.66 | |
V2O5(s) + 2 H+ ⇌ 2 VO2+ + H2O | –0.64 ± 0.09 |
Ytterbium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[28] | Brown and Ekberg, 2016[152] |
---|---|---|
Yb3+ + H2O ⇌ YbOH2+ + H+ | −7.7 | −7.31 ± 0.18 |
Yb3+ + 2 H2O ⇌ Yb(OH)2+ + 2 H+ | (−15.8) | |
Yb3+ + 3 H2O ⇌ Yb(OH)3 + 3 H+ | (−24.1) | |
Yb3+ + 4 H2O ⇌ Yb(OH)4− + 4 H+ | −32.7 | |
2 Yb3+ + 2 H2O ⇌ Yb2(OH)24+ + 2 H+ | −13.76 ± 0.20 | |
3 Yb3+ + 5 H2O ⇌ Yb3(OH)54+ + 5 H+ | −30.6 ± 0.3 | |
Yb(OH)3(s) + 3 H+ ⇌ Yb3+ + 3 H2O | 14.7 | 15.35 ± 0.20 |
Yttrium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[46] | Brown and Ekberg, 2016[66] |
---|---|---|
Y3+ + H2O ⇌ YOH2+ + H+ | –7.7 | –7.77 ± 0.06 |
Y3+ + 2 H2O ⇌ Y(OH)2+ + 2 H+ | (–16.4) [Estimation] | |
Y3+ + 3 H2O ⇌ Y(OH)3 + 3 H+ | (–26.0) [Estimation] | |
Y3+ + 4 H2O ⇌ Y(OH)4-+ 4 H+ | –36.5 | |
2 Y3+ + 2 H2O ⇌ Y2(OH)24+ + 2 H+ | –14.23 | –14.1 ± 0.2 |
3 Y3+ + 5 H2O ⇌ Y3(OH)54+ + 5 H+ | –31.6 | –32.7 ± 0.3 |
Y(OH)3(s) + 3 H+ ⇌ Y3+ + 3 H2O | 17.5 | 17.32 ± 0.30 |
Zinc
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[153] | Powell and Brown, 2013[154] | Brown and Ekberg, 2016[155] |
---|---|---|---|
Zn2+ + H2O ⇌ ZnOH+ + H+ | −8.96 | −8.96 ± 0.05 | −8.94 ± 0.06 |
Zn2+ + 2 H2O ⇌ Zn(OH)2 + 2 H+ | −16.9 | –17.82 ± 0.08 | −17.89 ± 0.15 |
Zn2+ + 3 H2O ⇌ Zn(OH)3- + 3 H+ | −28.4 | –28.05 ± 0.05 | −27.98 ± 0.10 |
Zn2+ + 4 H2O ⇌ Zn(OH)42- + 4 H+ | −41.2 | –40.41 ± 0.12 | −40.35 ± 0.22 |
2 Zn2+ + H2O ⇌ Zn2OH3+ + H+ | −9.0 | –7.9 ± 0.2 | −7.89 ± 0.31 |
2 Zn2+ + 6 H2O ⇌ Zn2(OH)62- + 6 H+ | −57.8 | ||
ZnO(s) + 2 H+ ⇌ Zn2+ + H2O | 11.14 | 11.12 ± 0.05 | 11.11 ± 0.10 |
ε-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.38 ± 0.20 | 11.38± 0.20 | |
β1-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.72 ± 0.04 | ||
β2-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.76 ± 0.04 | ||
γ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.70 ± 0.04 | ||
δ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O | 11.81 ± 0.04 |
Zirconium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
Reaction | Baes and Mesmer, 1976[55] | Thoenen et al., 2014[96] | Brown and Ekberg, 2016[156] |
---|---|---|---|
Zr4+ + H2O ⇌ ZrOH3+ + H+ | 0.32 | 0.32 ± 0.22 | 0.12 ± 0.12 |
Zr4+ + 2 H2O ⇌ Zr(OH)22+ + 2 H+ | (−1.7)* | 0.98 ± 1.06* | −0.18 ± 0.17* |
Zr4+ + 3 H2O ⇌ Zr(OH)3+ + 3 H+ | (−5.1) | ||
Zr4+ + 4 H2O ⇌ Zr(OH)4 + 4 H+ | –9.7* | –2.19 ± 0.70* | −4.53 ± 0.37* |
Zr4+ + 5 H2O ⇌ Zr(OH)5– + 5 H+ | –16.0 | ||
Zr4+ + 6 H2O ⇌ Zr(OH)62– + 6 H+ | –29± 0.70 | –30.5 ± 0.3 | |
3 Zr4+ + 4 H2O ⇌ Zr3(OH)48+ + 4 H+ | –0.6 | 0.4 ± 0.3 | 0.90 ± 0.18 |
3 Zr4+ + 5 H2O ⇌ Zr3(OH)57+ + 5 H+ | 3.70 | ||
3 Zr4+ + 9 H2O ⇌ Zr3(OH)93+ + 9 H+ | 12.19 ± 0.20 | 12.19 ± 0.20 | |
4 Zr4+ + 8 H2O ⇌ Zr4(OH)88+ + 8 H+ | 6.0 | 6.52 ± 0.05 | 6.52 ± 0.05 |
4 Zr4+ + 15 H2O ⇌ Zr4(OH)15+ + 15 H+ | 12.58± 0.24 | ||
4 Zr4+ + 16 H2O ⇌ Zr4(OH)16 + 16 H+ | 8.39± 0.80 | ||
ZrO2(s) + 4 H+ ⇌ Zr4+ + 2 H2O | –1.9* | –5.37 ± 0.42* | |
ZrO2(s, baddeleyite) + 4 H+ ⇌ Zr4+ + 2 H2O | –7 ± 1.6 | ||
ZrO2(am) + 4 H+ ⇌ Zr4+ + 2 H2O | –3.24± 0.10 | –2.97 ± 0.18 |
*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.
References
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 121.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 757–797.
- ↑ Hummel, W.; Thoenen, T. (2023). Technical Report 21-03. The PSI Chemical Thermodynamic Database 2020. Wettingen: NAGRA. pp. 252-259.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 NIST46. NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0.. https://www.nist.gov/srd/nist46.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 407–414.
- ↑ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 Grenthe, I.; Gaona, X.; Plyasunov, A.V.; Rao, L.; Runde, W.H.; Grambow, B.; Konings, R.J.M.; Smith, A.L. et al. (2020). Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Paris: OECD Publishing. https://www.oecd-nea.org/upload/docs/application/pdf/2020-10/7500_second_update_of_u_np_pu_am_and_tc_web.pdf.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 414.
- ↑ 8.0 8.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 375.
- ↑ 9.0 9.1 9.2 Lothenbach, B.; Ochs, M.; Wanner, H.; Yui, M. (1999). Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. TN8400 99-011. Japan Nuclear Cycle Development Institute (JNC).
- ↑ 10.0 10.1 10.2 Kitamura, A.; Fujiwara, K.; Doi, R.; Yoshida, Y.; Mihara, M.; Terashima, M.; Yui, M. (2010). JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024. Japan Atomic Energy Agency.
- ↑ Filella, M.; May, P.M. (2003). "Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters.". Geochim. Cosmochim. Acta 67: 4013–4031. doi:10.1016/S0016-7037(03)00095-4.
- ↑ 12.0 12.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 370.
- ↑ 13.0 13.1 Nordstrom, D.K.; Archer, D. (2003). Welch, AH. ed. Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water.. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1.
- ↑ 14.0 14.1 Nordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry 79: 217‒255. doi:10.2138/rmg.2014.79.4.
- ↑ Khodakovsky, I.L.; Ryzhenko, B.N.; Naumov, G.B. (1968). "Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution)". Geokhimiya 12: 1486‒ 1503, 1968.
- ↑ 16.0 16.1 16.2 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 103.
- ↑ 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 Nordstrom, D.K.; Plummer, L.N.; Langmuir, D.; Busenberg, E.; May, H.M.; Jones, B.F.; Parkhurst, D.L. (1990). Melchior, D.C.. ed. Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. Washington, DC: ACS. pp. 398–446.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. New York: Wiley. pp. 213–217.
- ↑ 19.0 19.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 419–422.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 95.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 383.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 874–884.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 111.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 301.
- ↑ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2011). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 83: 1163–1214. doi:10.1351/PAC-REP-10-08-09.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 730–738.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 195–210.
- ↑ 28.00 28.01 28.02 28.03 28.04 28.05 28.06 28.07 28.08 28.09 28.10 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 137.
- ↑ 29.0 29.1 29.2 29.3 29.4 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
- ↑ 30.0 30.1 30.2 Ball, J.W.; Nordstrom, D.K. (1998). "Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides and hydroxides.". J. Chem. Eng. Data 43: 895–918. https://doi.org/10.1021/je980080a.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 220.
- ↑ Rai, D.; Sass, B.M.; Moore, D.A. (1987). "Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide". Inorg. Chem. 26: 345–349. https://doi.org/10.1021/ic00250a002.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 541–555.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 216.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 241.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 620–628.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 628−632.
- ↑ 38.0 38.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 650–702.
- ↑ Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 274.
- ↑ Plyasunova, N.V.; Wang, M.; Zhang, Y.; Muhammed, M. (1997). "Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K". Hydrometalurgy 45: 37–51. https://doi.org/10.1016/S0304-386X(96)00073-4.
- ↑ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanne, H.. "Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems.". Pure Appl. Chem. 79: 895–950. http://dx.doi.org/10.1002/chin.200740221.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 415−420.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 290−292.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 295−297.
- ↑ 45.0 45.1 45.2 45.3 45.4 45.5 Hummel, W.; Berner, U.; Curti, E.; Pearson, F.J.; Thoenen, T. (2002). TECHNICAL REPORT 02-16. Nagra/ PSI Chemical Thermodynamic Data Base 01/01..
- ↑ 46.0 46.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 137.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 284–287.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 319.
- ↑ Smith, R.M.; Martell, A.E.; Motekaitis, R.J. (2003). NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46. Gaithersburg, MD, USA: National Institute of Standards, U.S. Dept. of Commerce.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 797–812.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 349.
- ↑ Wood, S.A.; Samson, I.M. (2006). "The aqueous geochemistry of gallium, germanium, indium and scandium". Ore Geol. Rev. 28. https://doi.org/10.1016/j.oregeorev.2003.06.002.
- ↑ Filella, M.; May, P.M. (2023). "The aqueous solution chemistry of germanium under conditions of environmental and biological interest: inorganic ligands". Applied Geochemistry 155: 105631. https://doi.org/10.1016/j.apgeochem.2023.105631.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 279–285.
- ↑ 55.0 55.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 158.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 460–463.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 293−295.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. pp. 327.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 812–817.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 736‒739.
- ↑ 61.0 61.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 235.
- ↑ 62.0 62.1 Lemire, R.J.; Berner, U.; Musikas, C.; Palmer, D.A.; Taylor, P.; Tochiyama, O. (2013). Chemical Thermodynamics of Iron, Part 1. Chemical Thermodynamics. 13a. OECD Nuclear Energy Agency (NEA).
- ↑ Brown, P.I.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 573−585.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 585–620.
- ↑ Baer, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 137.
- ↑ 66.0 66.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 365.
- ↑ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.K.; Sjöberg, S.; Wanner, H. (2009). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 81: 2425–2476. doi:10.1351/PAC-REP-09-03-05.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
- ↑ Cataldo, S.; Lando, G.; Milea, D.; Orecchio, S.; Pettignano, A.; Sammartano, S. (2018). ", A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate". New J. Chem. 42: 7640–7648. doi:10.1039/C7NJ04456A.
- ↑ 71.0 71.1 71.2 Feitknecht, W.; Schindler, P. (1963). "Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution". Pure and Applied Chemistry 6 (2): 125–206. doi:10.1351/pac196306020125. https://doi.org/10.1515/iupac.6.0001.
- ↑ 72.0 72.1 72.2 72.3 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 86.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 136–141.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 89.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 178–195.
- ↑ Perrin, D.D (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 181.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 226.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 557−561.
- ↑ 79.0 79.1 79.2 Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 568–570.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. pp. 302.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 741-755.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 312.
- ↑ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. (2005). "Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+– Cl−, OH−, CO32−, SO42−, and PO43− aqueous systems (IUPAC technical report)". Pure Appl. Chem. 77: 739–80. doi:10.1515/iupac.77.0018.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 256.
- ↑ Jolivet, J.-P. (2000). "Metal Oxide Chemistry and Synthesis". Solution to Solid State. Wiley.
- ↑ Crea, F.; De Stefano, C.; Irto, A.; Milea, D.; Pettignano, A.; Sammartano, S. (2017). "Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations". Journal of Molecular Liquids 229: 15–26. doi:10.1016/j.molliq.2016.12.041.
- ↑ Neck, V.; Altmaier, M.; Rabung, T.; Lützenkirchen, J.; Fanghänel, T. (2009). "Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes". Pure Appl. Chem. 81: 1555–1568. doi:10.1351/PAC-CON-08-09-05.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380.
- ↑ 89.0 89.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380–384.
- ↑ Brownº, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 384–394.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183–184.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 394–396.
- ↑ Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 246.
- ↑ Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R.J.; Prei, W. (2005). Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6. Paris: OECD.
- ↑ 96.0 96.1 96.2 96.3 96.4 96.5 Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen PSI, Switzerland: Paul Scherrer Institut. pp. 205–212.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 632–649.
- ↑ Filella, M.; May, P.M. (2020). "The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest.". Applied Geochemistry 122. doi:10.1016/j.apgeochem.2020.104729.
- ↑ 99.0 99.1 Galbács, Z.M.; Zsednai, Á.; Csányi, L.J. (1983). "The acidic behaviour of osmium(VIII) and osmium(VI". Transition Met. Chem. 8: 328–332. doi:10.1007/BF00618563.
- ↑ Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 186.
- ↑ Kitamura, A.; Yui, M. (2010). "Reevaluation of thermodynamic data for hydroxide and hydrolysis species of palladium(II) using the Brønsted-Guggenheim Scatchard model". J. Nuclear Sci. Technol. 47: 760−770. doi:10.1080/18811248.2010.9711652.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 723−725.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 186–187.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 396–397.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 187–189.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 397–401.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 189–190.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 401–403.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 190–191.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 403–405.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 148–150.
- ↑ Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 191.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 263.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 722.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 128.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 225–236.
- ↑ 117.0 117.1 117.2 Olin, Å; Noläng, B.; Öhman, L.-O.; Osadchii, E; Rosén, E. (2005). Chemical Thermodynamics of Selenium. OECD Pub..
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 386.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 387.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 342.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 278.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 725−730.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 142–147.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 210–213.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 252.
- ↑ Filella, M.; May, P.M. (2019). "The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest". Applied Geochemistry 109: 104402. doi:10.1016/j.apgeochem.2019.104402.
- ↑ 127.0 127.1 127.2 Filella, M.; May, P.M. (2019). "The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species". Environ. Chem. 16: 289–295. doi:10.1071/EN19017.
- ↑ 128.0 128.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 395.
- ↑ Brwon, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 287−290.
- ↑ 130.0 130.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 335.
- ↑ 131.0 131.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 817–826.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 168.
- ↑ Rand, M.; Fuger, J.; Grenthe, I.; Neck, V.; Rai, D. (2008). Chemical Thermodynamics of Thorium. OECD Publishing. https://www.oecd-nea.org/science/pubs/2007/6254-chemical-thermodynamics-vol.11.pdf.
- ↑ Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. pp. 259–263.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 462–498.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 297−300.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 357.
- ↑ Cigala, R.M.; Crea, F.; De Stefan, C.; Lando, G.; Milea, D.; Sammartano, S. (2012). "The inorganic speciation of tin(II) in aqueous solution". Geochim. Cosmochim. Acta 87: 1–20. doi:10.1016/j.gca.2012.03.029.
- ↑ 139.0 139.1 Gamsjäger, H.; Gajda, T.; Sangster, J.; Saxena, S.K.; Voigt, W. (2012). Chemical Thermodynamics of Tin. Chemical Thermodynamics Volume 12. Paris: OECD.
- ↑ 140.0 140.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 836–842.
- ↑ Perrin, D.D. (1969). Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. pp. 208.
- ↑ 142.0 142.1 Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 151.
- ↑ 143.0 143.1 Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 433–442.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 181.
- ↑ Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. https://www.psi.ch/sites/default/files/import/les/DatabaseEN/PSI-Bericht%252014-04_final_druckerei.pdf.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley (published 336–349).
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. pp. 182.
- ↑ Grenthe, I.; Fuger, J.; Konings, R.J.M.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung, C.; Wanner, H. (1992). Chemical Thermodynamics of Uranium, Chemical Vol 1,. Paris: OECD Publishing. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/uranium.pdf.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 350–379.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 209.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 517–541.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 300−303.
- ↑ Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 293.
- ↑ Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Helfer, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2013). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH–, Cl–, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)*". Pure and Applied Chemistry 85: 2249–2311. http://dx.doi.org/10.1351/PAC-REP-13-06-03.
- ↑ Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 676−700.
- ↑ Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 442–460.
Original source: https://en.wikipedia.org/wiki/Hydrolysis constant.
Read more |