Chemistry:Peters four-step chemistry

From HandWiki
Short description: Series of reactions for methane combustion

Peters four-step chemistry is a systematically reduced mechanism for methane combustion, named after Norbert Peters, who derived it in 1985.[1][2][3] The mechanism reads as[4]

[math]\displaystyle{ \begin{align} & \text{I)} && \ce{CH4 + 2H + H2O -\gt CO + 4H2} \\ & \text{II)} && \ce{CO + H2O \lt -\gt CO2 + H2} \\ & \text{III)} && \ce{H + H + M -\gt H2 + M} \\ & \text{IV)} && \ce{O2 + 3H2 \lt -\gt 2H + 2H2O} \end{align} }[/math]

The mechanism predicted four different regimes where each reaction takes place. The third reaction, known as radical consumption layer, where most of the heat is released, and the first reaction, also known as fuel consumption layer, occur in a narrow region at the flame. The fourth reaction is the hydrogen oxidation layer, whose thickness is much larger than the former two layers. Finally, the carbon monoxide oxidation layer is the largest of them all, corresponding to the second reaction, and oxidizes very slowly.[5][6]

Peters-Williams three-step chemistry

A three-step mechanism was derived in 1987 by Peters and Forman A. Williams by assuming steady-state approximation for the hydrogen radical.[7] Then,

[math]\displaystyle{ \begin{align} & \text{I)} && \ce{CH4 + O2 -\gt CO + H2 + H2O} \\ & \text{II)} && \ce{CO + H2O \lt -\gt CO2 + H2} \\ & \text{III)} && \ce{O2 + 2H2 \lt -\gt 2H2O} \end{align} }[/math]

See also

References

  1. Peters, N. (1985). "Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames", pp. 90–109 in Numerical simulation of combustion phenomena. Springer, Berlin, Heidelberg. doi:10.1007/BFb0008654. ISBN:978-3-540-39751-9
  2. Peters, N.; Kee, R.J. (1987). "The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism". Combustion and Flame 68: 17–29. doi:10.1016/0010-2180(87)90062-9. 
  3. Smooke, M. D. (1991). Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames. Lecture Notes in Physics. 384. doi:10.1007/BFb0035362. ISBN 978-3-662-13854-0. Bibcode1991LNP...384.....S. 
  4. Poinsot, T., & Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards, Inc.
  5. Seshadri, K.; Peters, N. (1988). "Asymptotic structure and extinction of methane-air diffusion flames". Combustion and Flame 73: 23–44. doi:10.1016/0010-2180(88)90051-X. 
  6. Seshadri, K.; Peters, N. (1990). "The inner structure of methane-air flames". Combustion and Flame 81 (2): 96–118. doi:10.1016/0010-2180(90)90058-Y. 
  7. Peters, N.; Williams, F.A. (1987). "The asymptotic structure of stoichiometric methane-air flames". Combustion and Flame 68 (2): 185–207. doi:10.1016/0010-2180(87)90057-5.