Chemistry:Plumbene

From HandWiki
Short description: Material made up of a single layer of lead atoms

Plumbene is a material made up of a single layer of lead atoms.[1][2][3] The material is created in a process similar to that of graphene, silicene, germanene, and stanene, in which high vacuum and high temperature are used to deposit a layer of lead atoms on a substrate. High-quality thin films of plumbene have revealed two-dimensional honeycomb structures. First researched by Indian scientists, further investigations are being done around the world.

Preparation and structure

In April 2019, J. Yuhara and others reported the deposition of a single atom thickness by molecular beam epitaxy with a segregation method upon a palladium surface in a crystal lattice with Miller indices (111). The structure was confirmed with scanning tunneling microscopy (STM) revealing a nearly flat honeycomb structure.[4] There is no evidence of any three-dimensional islands, but one notices a unique nanostructured tessellation all over the terraces looking like a space-filling polyhedral foam reduced to dimension 2.

Properties

Plumbene's electronic and optical properties have been determined from ab initio calculations, indicating a band gap of 0.4 eV [5][1]

References

  1. 1.0 1.1 Das, Dhiman Kumar; Sarkar, Jit; Singh, S. K. (2018-08-01). "Effect of sample size, temperature and strain velocity on mechanical properties of plumbene by tensile loading along longitudinal direction: A molecular dynamics study". Computational Materials Science 151: 196–203. doi:10.1016/j.commatsci.2018.05.006. 
  2. Wang, Pei-ji; Ping Li; Zhang, Bao-min; Yan, Shi-shen; Sheng-shi Li; Zhang, Run-wu; Ji, Wei-xiao; Yan, Shi-shen et al. (2016-02-02). "Unexpected Giant-Gap Quantum Spin Hall Insulator in Chemically Decorated Plumbene Monolayer". Scientific Reports (Nature) 6: 20152. doi:10.1038/srep20152. PMID 26833133. Bibcode2016NatSR...620152Z. 
  3. Zhang, Liang; Zhao, Hui; Ji, Wei-xiao; Zhang, Chang-wen; Li, Ping; Wang, Pei-ji (2018). "Discovery of a new quantum spin Hall phase in bilayer plumbene". Chemical Physics Letters 712: 78–82. doi:10.1016/j.cplett.2018.09.016. ISSN 0009-2614. Bibcode2018CPL...712...78Z. https://www.researchgate.net/publication/327911716. 
  4. Yuhara, J.; He, B.; Le Lay, G. (2019). "Graphene's Latest Cousin: Plumbene Epitaxial Growth on a "Nano WaterCube"". Advanced Materials 31 (27): 1901017. doi:10.1002/adma.201901017. PMID 31074927. Bibcode2019AdM....3101017Y. 
  5. Yu, X.-L.; Huang, L.; Wu, J. (2017), "From a normal insulator to a topological insulator in plumbene", Physical Review B 95 (12): 125113, doi:10.1103/PhysRevB.95.125113, Bibcode2017PhRvB..95l5113Y