Chemistry:Single-drop microextraction

From HandWiki
Short description: Sample preparation technique

Single-drop microextraction (SDME) is a sample preparation technique in chemical test or analytical chemistry. SDME uses only a single drop of solvent to isolate and preconcentrate analytes from a sample matrix. The extremely low solvent use of SDME makes it cost-effective and less harmful to the environment, subscribing to the principles of green analytical chemistry.[1]

In many chemical test procedures, sample preparation, often the time- and cost-determining step, is designed to isolate analytes from interferences and to provide (typically through enrichment) an analyte concentration suitable for detection. Liquid−liquid extraction (LLE) has long been a widely used technique for the preparation of aqueous samples. Numerous efforts have been made to improve upon the LLE technique for decades.

SDME using only one microdrop of organic solvent to perform LLE was first described in 1996 in Analytical Chemistry.  Liu and Dasgupta described a microdrop LLE system with a drop (~1.3 microliter) of chloroform at the tip of a tube suspended in an aqueous drop to perform automatic drop-in-drop extraction and in situ optical detection.[2] Jeannot and Cantwell introduced a method with a single drop (8 microliter) of n-octane at the end of a Teflon rod in a stirred aqueous sample solution to extract the analyte into the organic drop for GC analysis.[3] Since its introduction, SDME has become a popular LLE technique because it is inexpensive, easy to operate, and uses only minuscule amount of solvent.[4][5][6][7][8][9][10]

References

  1. Gałuszka, Agnieszka; Migaszewski, Zdzisław; Namieśnik, Jacek (2013). "The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices". TrAC Trends in Analytical Chemistry 50: 78–84. doi:10.1016/j.trac.2013.04.010. 
  2. Liu, Hanghui; Dasgupta, Purnendu K. (1996). "Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop". Analytical Chemistry (ACS Publications) 68 (11): 1817–1821. doi:10.1021/ac960145h. ISSN 0003-2700. PMID 21619093. 
  3. Jeannot, Michael; Cantwell, Frederick F. (1996). "Solvent Microextraction into a Single Drop". Analytical Chemistry 68 (13): 2236–2240. doi:10.1021/ac960042z. ISSN 0003-2700. PMID 21619310. 
  4. Ma, Minhui; Cantwell, Frederick F. (1998). "Solvent Microextraction with Simultaneous Back-Extraction for Sample Cleanup and Preconcentration: Quantitative Extraction". Analytical Chemistry 70 (18): 3912–3919. doi:10.1021/ac980174n. ISSN 0003-2700. 
  5. Valcárcel, M.; Cárdenas, S.; Lucena, R. (2017). Analytical Microextraction Techniques. Bentham Science Publishers. pp. 327–379. ISBN 978-1-68108-380-3. https://books.google.com/books?id=5XGZDgAAQBAJ. 
  6. "Single Drop Micro Extraction". http://leapwiki.com/mediawiki/index.php/Single_Drop_Micro_Extraction. 
  7. Li, Guizhen; Row, Kyung H. (2021). "Single-drop microextraction technique for the determination of antibiotics in environmental water". Journal of Separation Science 45 (4): 883–895. doi:10.1002/jssc.202100682. ISSN 1615-9306. PMID 34919334. 
  8. Nunes, L.S.; das Graças Andrade Korn, M.; Lemos, V.A. (2020). "Direct Immersion Single-Drop Microextraction and Continuous-Flow Microextraction for the Determination of Manganese in Tonic Drinks and Seafood Samples". Food Analytical Methods 13 (8): 1681–1689. doi:10.1007/s12161-020-01794-4. ISSN 1936-9751. 
  9. Mafra, Gabriela; Vieira, Augusto; Merib, Josias; Anderson, Jared; Carasek, Eduardo (2019). "Single drop microextraction in a 96-well plate format: A step toward automated and high-throughput analysis". Analytica Chimica Acta 1063: 159–166. doi:10.1016/j.aca.2019.02.013. ISSN 0003-2670. PMID 30967180. https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2110&context=chem_pubs. 
  10. Xu, Li; Basheer, Chanbasha; Lee, Hian (2007). "Developments in single-drop microextraction". Journal of Chromatography A 1152 (1–2): 184–192. doi:10.1016/j.chroma.2006.10.073. ISSN 0021-9673. PMID 17097670.