Cheng's eigenvalue comparison theorem

From HandWiki
Short description: In large domains, the first Dirichlet eigenvalue of the Laplace–Beltrami operator is small

In Riemannian geometry, Cheng's eigenvalue comparison theorem states in general terms that when a domain is large, the first Dirichlet eigenvalue of its Laplace–Beltrami operator is small. This general characterization is not precise, in part because the notion of "size" of the domain must also account for its curvature.[1] The theorem is due to (Cheng 1975b) by Shiu-Yuen Cheng. Using geodesic balls, it can be generalized to certain tubular domains (Lee 1990).

Theorem

Let M be a Riemannian manifold with dimension n, and let BM(pr) be a geodesic ball centered at p with radius r less than the injectivity radius of p ∈ M. For each real number k, let N(k) denote the simply connected space form of dimension n and constant sectional curvature k. Cheng's eigenvalue comparison theorem compares the first eigenvalue λ1(BM(pr)) of the Dirichlet problem in BM(pr) with the first eigenvalue in BN(k)(r) for suitable values of k. There are two parts to the theorem:

[math]\displaystyle{ K_M\le k. }[/math]
Then
[math]\displaystyle{ \lambda_1\left(B_{N(k)}(r)\right) \le \lambda_1\left(B_M(p,r)\right). }[/math]

The second part is a comparison theorem for the Ricci curvature of M:

  • Suppose that the Ricci curvature of M satisfies, for every vector field X,
[math]\displaystyle{ \operatorname{Ric}(X,X) \ge k(n-1)|X|^2. }[/math]
Then, with the same notation as above,
[math]\displaystyle{ \lambda_1\left(B_{N(k)}(r)\right) \ge \lambda_1\left(B_M(p,r)\right). }[/math]

S.Y. Cheng used Barta's theorem to derive the eigenvalue comparison theorem. As a special case, if k = −1 and inj(p) = ∞, Cheng’s inequality becomes λ*(N) ≥ λ*(H n(−1)) which is McKean’s inequality.[2]

See also

References

Citations

  1. Chavel 1984, p. 77
  2. Chavel 1984, p. 70

Bibliography

  • Bessa, G.P.; Montenegro, J.F. (2008), "On Cheng's eigenvalue comparison theorem", Mathematical Proceedings of the Cambridge Philosophical Society 144 (3): 673–682, doi:10.1017/s0305004107000965, ISSN 0305-0041 .
  • Chavel, Isaac (1984), Eigenvalues in Riemannian geometry, Pure Appl. Math., 115, Academic Press .
  • Cheng, Shiu Yuen (1975a), "Eigenfunctions and eigenvalues of Laplacian", Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, Providence, R.I.: American Mathematical Society, pp. 185–193 
  • Cheng, Shiu Yuen (1975b), "Eigenvalue Comparison Theorems and its Geometric Applications", Math. Z. 143: 289–297, doi:10.1007/BF01214381 .
  • Lee, Jeffrey M. (1990), "Eigenvalue Comparison for Tubular Domains", Proceedings of the American Mathematical Society (American Mathematical Society) 109 (3): 843–848, doi:10.2307/2048228 .
  • McKean, Henry (1970), "An upper bound for the spectrum of △ on a manifold of negative curvature", Journal of Differential Geometry 4: 359–366 .
  • Lee, Jeffrey M.; Richardson, Ken (1998), "Riemannian foliations and eigenvalue comparison", Ann. Global Anal. Geom. 16: 497–525, doi:10.1023/A:1006573301591 /