Chinese Postman Problem Complexity List
From HandWiki
Short description: none
This is a list of computational complexities for different arc routing problems.
Complexity of the Chinese Postman (CP) Problem
CP variant | Classical Complexity | Approximation | Parametrized complexity |
Undirected | [math]\displaystyle{ O(|V|^3) }[/math]-time algorithm[1] | ||
Directed | [math]\displaystyle{ O(|V|^3) }[/math]-time algorithm[1]
[math]\displaystyle{ O((|E|-|V|)|V|^2) }[/math]-time algorithm[2] |
||
Mixed | NP-complete[3]
[math]\displaystyle{ O(|V|^3) }[/math]-time solvable if each vertex has even degree[1] |
[math]\displaystyle{ O(\max\{|V|^3,|A|(\max\{|A|,|E|\})^2\}) }[/math]-time factor 3/2[4] | [math]\displaystyle{ O(2^{|E|}\cdot|V|^3) }[/math]-time algorithm[5]
In FPT with respect to |A|[5] In XP with respect to treewidth[6] |
Windy | NP-complete[7] | Factor 3/2[9] | |
k-Hierarchical | NP-complete[10]
[math]\displaystyle{ O(k|V|^4) }[/math]-time solvable if precedence relation linear |
||
Min-sum k postmen | [math]\displaystyle{ O(|V|^3) }[/math]-time algorithm with post office vertex,[11] otherwise NP-complete[12] | In FPT with respect to k without post office vertex[13] | |
Min-max k postmen | NP-complete[14] | [math]\displaystyle{ O(|V|^3) }[/math]-time factor(2-1/k)[14] |
See also
References
- ↑ 1.0 1.1 1.2 Edmonds, Jack; Johnson, Ellis L. (1973). "Matching, Euler tours and the Chinese postman". Mathematical Programming 5 (1): 88–124. doi:10.1007/bf01580113. ISSN 0025-5610. http://dx.doi.org/10.1007/bf01580113.
- ↑ Yaxiong, Lin; Yongchang, Zhao (January 1988). "A new algorithm for the directed chinese postman problem". Computers & Operations Research 15 (6): 577–584. doi:10.1016/0305-0548(88)90053-6. ISSN 0305-0548. http://dx.doi.org/10.1016/0305-0548(88)90053-6.
- ↑ Papadimitriou, Christos H. (July 1976). "On the complexity of edge traversing". Journal of the ACM 23 (3): 544–554. doi:10.1145/321958.321974. ISSN 0004-5411. http://dx.doi.org/10.1145/321958.321974.
- ↑ Raghavachari, Balaji; Veerasamy, Jeyakesavan (January 1999). "A 3/2-Approximation Algorithm for the Mixed Postman Problem". SIAM Journal on Discrete Mathematics 12 (4): 425–433. doi:10.1137/s0895480197331454. ISSN 0895-4801. http://dx.doi.org/10.1137/s0895480197331454.
- ↑ 5.0 5.1 Gutin, Gregory; Jones, Mark; Sheng, Bin (2014), "Parameterized Complexity of the k-Arc Chinese Postman Problem", Algorithms - ESA 2014 (Berlin, Heidelberg: Springer Berlin Heidelberg): pp. 530–541, doi:10.1007/978-3-662-44777-2_44, ISBN 978-3-662-44776-5, http://dx.doi.org/10.1007/978-3-662-44777-2_44, retrieved 2022-05-09
- ↑ Fernandes, Cristina G.; Lee, Orlando; Wakabayashi, Yoshiko (January 2009). "Minimum cycle cover and Chinese postman problems on mixed graphs with bounded tree-width". Discrete Applied Mathematics 157 (2): 272–279. doi:10.1016/j.dam.2007.10.032. ISSN 0166-218X. http://dx.doi.org/10.1016/j.dam.2007.10.032.
- ↑ 7.0 7.1 Guan, Meigu (September 1984). "On the windy postman problem". Discrete Applied Mathematics 9 (1): 41–46. doi:10.1016/0166-218x(84)90089-1. ISSN 0166-218X. http://dx.doi.org/10.1016/0166-218x(84)90089-1.
- ↑ Win, Zaw (May 1989). "On the Windy Postman Problem on eulerian graphs". Mathematical Programming 44 (1–3): 97–112. doi:10.1007/bf01587080. ISSN 0025-5610. http://dx.doi.org/10.1007/bf01587080.
- ↑ Veerasamy, Jeyakesavan (1999). Approximation algorithms for Postman problems (PhD thesis). University of Texas at Dallas.
- ↑ Dror, Moshe; Stern, Helman; Trudeau, Pierre (1987). "Postman tour on a graph with precedence relation on arcs". Networks 17 (3): 283–294. doi:10.1002/net.3230170304. ISSN 0028-3045. http://dx.doi.org/10.1002/net.3230170304.
- ↑ "12th world computer congress— IFIP congress'92". Computers in Industry 20 (1): 124–126. January 1992. doi:10.1016/0166-3615(92)90137-c. ISSN 0166-3615. http://dx.doi.org/10.1016/0166-3615(92)90137-c.
- ↑ Thomassen, Carsten (June 1997). "On the Complexity of Finding a Minimum Cycle Cover of a Graph". SIAM Journal on Computing 26 (3): 675–677. doi:10.1137/s0097539794267255. ISSN 0097-5397. http://dx.doi.org/10.1137/s0097539794267255.
- ↑ Corberán, Ángel (2015). Arc Routing: Problems, Methods, and Applications. ISBN 978-1-61197-366-2.
- ↑ 14.0 14.1 Frederickson, Greg N.; Hecht, Matthew S.; Kim, Chul E. (May 1978). "Approximation Algorithms for Some Routing Problems". SIAM Journal on Computing 7 (2): 178–193. doi:10.1137/0207017. ISSN 0097-5397. http://dx.doi.org/10.1137/0207017.