Chow's moving lemma
From HandWiki
In algebraic geometry, Chow's moving lemma, proved by Wei-Liang Chow (1956), states: given algebraic cycles Y, Z on a nonsingular quasi-projective variety X, there is another algebraic cycle Z' on X such that Z' is rationally equivalent to Z and Y and Z' intersect properly. The lemma is one of key ingredients in developing the intersection theory, as it is used to show the uniqueness of the theory. Even if Z is an effective cycle, it is not, in general, possible to choose the cycle Z' to be effective.
References
- Chow, Wei-Liang (1956), "On equivalence classes of cycles in an algebraic variety", Annals of Mathematics 64 (3): 450–479, doi:10.2307/1969596, ISSN 0003-486X
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9
- Roberts, Joel (1972). "Chow's moving lemma. Appendix 2 to: "Motives" by Steven L. Kleiman.". Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.). Groningen, Wolters-Noordhoff. pp. 89–96. ISBN 9001670806. OCLC 579160.
Original source: https://en.wikipedia.org/wiki/Chow's moving lemma.
Read more |