Cocycle category

From HandWiki
Short description: Category-theoretic construction

In category theory, a branch of mathematics, the cocycle category of objects X, Y in a model category is a category in which the objects are pairs of maps XfZgY and the morphisms are obvious commutative diagrams between them.[1] It is denoted by H(X,Y). (It may also be defined using the language of 2-category.)

One has: if the model category is right proper and is such that weak equivalences are closed under finite products,

π0H(X,Y)[X,Y],(f,g)gf1

is bijective.

References

  1. Jardine, J. F. (2009). "Cocycle Categories". Algebraic Topology Abel Symposia Volume 4. Berlin Heidelberg: Springer. pp. 185–218. doi:10.1007/978-3-642-01200-6_8. ISBN 978-3-642-01200-6.