Complete Fermi–Dirac integral

From HandWiki
Short description: Mathematical integral

In mathematics, the complete Fermi–Dirac integral, named after Enrico Fermi and Paul Dirac, for an index is defined by

[math]\displaystyle{ F_j(x) = \frac{1}{\Gamma(j+1)} \int_0^\infty \frac{t^j}{e^{t-x} + 1}\,dt, \qquad (j \gt -1) }[/math]

This equals

[math]\displaystyle{ -\operatorname{Li}_{j+1}(-e^x), }[/math]

where [math]\displaystyle{ \operatorname{Li}_{s}(z) }[/math] is the polylogarithm.

Its derivative is

[math]\displaystyle{ \frac{dF_{j}(x)}{dx} = F_{j-1}(x) , }[/math]

and this derivative relationship is used to define the Fermi-Dirac integral for nonpositive indices j. Differing notation for [math]\displaystyle{ F_j }[/math] appears in the literature, for instance some authors omit the factor [math]\displaystyle{ 1/\Gamma(j+1) }[/math]. The definition used here matches that in the NIST DLMF.

Special values

The closed form of the function exists for j = 0:

[math]\displaystyle{ F_0(x) = \ln(1+\exp(x)). }[/math]

For x = 0, the result reduces to

[math]\displaystyle{ F_j(0) = \eta(j+1), }[/math]

where [math]\displaystyle{ \eta }[/math] is the Dirichlet eta function.

See also

References

  • "3.411.3." (in English). Table of Integrals, Series, and Products (8 ed.). Academic Press, Inc.. 2015. p. 355. ISBN:978-0-12-384933-5. ISBN 978-0-12-384933-5. 
  • R.B.Dingle (1957). Fermi-Dirac Integrals. Appl.Sci.Res. B6. pp. 225–239. 

External links