Compression body
In the theory of 3-manifolds, a compression body is a kind of generalized handlebody.
A compression body is either a handlebody or the result of the following construction:
- Let [math]\displaystyle{ S }[/math] be a compact, closed surface (not necessarily connected). Attach 1-handles to [math]\displaystyle{ S \times [0,1] }[/math] along [math]\displaystyle{ S \times \{1\} }[/math].
Let [math]\displaystyle{ C }[/math] be a compression body. The negative boundary of C, denoted [math]\displaystyle{ \partial_{-}C }[/math], is [math]\displaystyle{ S \times \{0\} }[/math]. (If [math]\displaystyle{ C }[/math] is a handlebody then [math]\displaystyle{ \partial_- C = \emptyset }[/math].) The positive boundary of C, denoted [math]\displaystyle{ \partial_{+}C }[/math], is [math]\displaystyle{ \partial C }[/math] minus the negative boundary.
There is a dual construction of compression bodies starting with a surface [math]\displaystyle{ S }[/math] and attaching 2-handles to [math]\displaystyle{ S \times \{0\} }[/math]. In this case [math]\displaystyle{ \partial_{+}C }[/math] is [math]\displaystyle{ S \times \{1\} }[/math], and [math]\displaystyle{ \partial_{-}C }[/math] is [math]\displaystyle{ \partial C }[/math] minus the positive boundary.
Compression bodies often arise when manipulating Heegaard splittings.
References
- Bonahon, Francis (2002). "Geometric structures on 3-manifolds". in Daverman, Robert J.; Sher, Richard B.. Handbook of Geometric Topology. North-Holland. pp. 93–164.
de:Henkelkörper#Kompressionskörper
Original source: https://en.wikipedia.org/wiki/Compression body.
Read more |