Conservative functor
From HandWiki
In category theory, a branch of mathematics, a conservative functor is a functor [math]\displaystyle{ F: C \to D }[/math] such that for any morphism f in C, F(f) being an isomorphism implies that f is an isomorphism.
Examples
The forgetful functors in algebra, such as from Grp to Set, are conservative. More generally, every monadic functor is conservative.[1] In contrast, the forgetful functor from Top to Set is not conservative because not every continuous bijection is a homeomorphism.
Every faithful functor from a balanced category is conservative.[2]
References
- ↑ Riehl, Emily (2016). Category Theory in Context. Courier Dover Publications. ISBN 048680903X. https://books.google.com/books?id=Sr09DQAAQBAJ. Retrieved 18 February 2017.
- ↑ Grandis, Marco (2013). Homological Algebra: In Strongly Non-Abelian Settings. World Scientific. ISBN 9814425931. https://books.google.com/books?id=kvW6CgAAQBAJ. Retrieved 14 January 2017.
External links
Original source: https://en.wikipedia.org/wiki/Conservative functor.
Read more |