Continuity in probability

From HandWiki

In probability theory, a stochastic process is said to be continuous in probability or stochastically continuous if its distributions converge whenever the values in the index set converge. [1][2]

Definition

Let X=(Xt)tT be a stochastic process in n. The process X is continuous in probability when Xr converges in probability to Xs whenever r converges to s.[2]

Examples and Applications

Feller processes are continuous in probability at t=0. Continuity in probability is a sometimes used as one of the defining property for Lévy process.[1] Any process that is continuous in probability and has independent increments has a version that is càdlàg.[2] As a result, some authors immediately define Lévy process as being càdlàg and having independent increments.[3]

References

  1. 1.0 1.1 Applebaum, D.. "Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes". University of Sheffield. pp. 37–53. http://www.applebaum.staff.shef.ac.uk/Brauns2notes.pdf. 
  2. 2.0 2.1 2.2 Kallenberg, Olav (2002). Foundations of Modern Probability (2nd ed.). New York: Springer. pp. 286. 
  3. Kallenberg, Olav (2002). Foundations of Modern Probability (2nd ed.). New York: Springer. pp. 290.