Continuum structure function
From HandWiki
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|
In mathematics, a continuum structure function (CSF) is defined by Laurence Baxter as a nondecreasing mapping from the unit hypercube to the unit interval. It is used by Baxter to help in the Mathematical modelling of the level of performance of a system in terms of the performance levels of its components.[1][2][3]
References
- ↑ "Continuum structures I". Journal of Applied Probability 21 (4): 802–815. 1984. doi:10.2307/3213697.
- ↑ "Continuum structures. II". Mathematical Proceedings of the Cambridge Philosophical Society 99 (2): 331–338. 1986. doi:10.1017/S0305004100064240. Bibcode: 1986MPCPS..99..331B.
- ↑ Kim, Chul (1987). "Reliability importance for continuum structure functions". Journal of Applied Probability 24 (3): 779–785. doi:10.2307/3214108.
Further reading
- Kim, Chul (1987). "Axiomatic characterizations of continuum structure functions". Operations Research Letters 6 (6): 297–300. doi:10.1016/0167-6377(87)90047-2.
- Baxter, Laurence A.; Lee, Seung Min (2009). "Further Properties of Reliability Importance for Continuum Structure Functions". Probability in the Engineering and Informational Sciences 3 (2): 237. doi:10.1017/S026996480000111X.
