Converse theorem
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well-behaved.
Weil's converse theorem
The first converse theorems were proved by Hamburger (1921) who characterized the Riemann zeta function by its functional equation, and by (Hecke 1936) who showed that if a Dirichlet series satisfied a certain functional equation and some growth conditions then it was the Mellin transform of a modular form of level 1. (Weil 1967) found an extension to modular forms of higher level, which was described by (Ogg 1969). Weil's extension states that if not only the Dirichlet series
- [math]\displaystyle{ L(s)=\sum\frac{a_n}{n^s} }[/math]
but also its twists
- [math]\displaystyle{ L_\chi(s)=\sum\frac{\chi(n)a_n}{n^s} }[/math]
by some Dirichlet characters χ, satisfy suitable functional equations relating values at s and 1−s, then the Dirichlet series is essentially the Mellin transform of a modular form of some level.
Higher dimensions
J. W. Cogdell, H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika have extended the converse theorem to automorphic forms on some higher-dimensional groups, in particular GLn and GLm×GLn, in a long series of papers.
References
- Cogdell, James W.; Piatetski-Shapiro, I. I. (1994), "Converse theorems for GLn", Publications Mathématiques de l'IHÉS 79 (79): 157–214, doi:10.1007/BF02698889, ISSN 1618-1913, http://www.numdam.org/item?id=PMIHES_1994__79__157_0
- Cogdell, James W.; Piatetski-Shapiro, I. I. (1999), "Converse theorems for GLn. II", Journal für die reine und angewandte Mathematik 507 (507): 165–188, doi:10.1515/crll.1999.507.165, ISSN 0075-4102
- Cogdell, James W.; Piatetski-Shapiro, I. I. (2002), "Converse theorems, functoriality, and applications to number theory", in Li, Tatsien, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Beijing: Higher Ed. Press, pp. 119–128, ISBN 978-7-04-008690-4, Bibcode: 2003math......4230C, http://mathunion.org/ICM/ICM2002.2/, retrieved 2011-06-18
- Cogdell, James W. (2007), "L-functions and converse theorems for GLn", in Sarnak, Peter; Shahidi, Freydoon, Automorphic forms and applications, IAS/Park City Math. Ser., 12, Providence, R.I.: American Mathematical Society, pp. 97–177, ISBN 978-0-8218-2873-1, https://books.google.com/books?id=EYsKo1FrLfIC
- Hamburger, Hans (1921), "Über die Riemannsche Funktionalgleichung der ζ-Funktion", Mathematische Zeitschrift 10 (3): 240–254, doi:10.1007/BF01211612, ISSN 0025-5874
- Hecke, E. (1936), "Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung", Mathematische Annalen 112 (1): 664–699, doi:10.1007/BF01565437, ISSN 0025-5831
- Ogg, Andrew (1969), Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam
- Weil, André (1967), "Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen", Mathematische Annalen 168: 149–156, doi:10.1007/BF01361551, ISSN 0025-5831
External links
Original source: https://en.wikipedia.org/wiki/Converse theorem.
Read more |