Convex space

From HandWiki

In mathematics, a convex space (or barycentric algebra) is a space in which it is possible to take convex combinations of any finite set of points.[1][2]

Formal Definition

A convex space can be defined as a set X equipped with a binary convex combination operation cλ:X×XX for each λ[0,1] satisfying:

  • c0(x,y)=x
  • c1(x,y)=y
  • cλ(x,x)=x
  • cλ(x,y)=c1λ(y,x)
  • cλ(x,cμ(y,z))=cλμ(cλ(1μ)1λμ(x,y),z) (for λμ1)

From this, it is possible to define an n-ary convex combination operation, parametrised by an n-tuple (λ1,,λn), where iλi=1.

Examples

Any real affine space is a convex space. More generally, any convex subset of a real affine space is a convex space.

History

Convex spaces have been independently invented many times and given different names, dating back at least to Stone (1949).[3] They were also studied by Neumann (1970)[4] and Świrszcz (1974),[5] among others.

Herstein and Milnor (1953)[6] used convex spaces to prove the Mixture-space theorem.

References

  1. "Convex space". https://ncatlab.org/nlab/show/convex+space. 
  2. Fritz, Tobias (2009). "Convex Spaces I: Definition and Examples". arXiv:0903.5522 [math.MG].
  3. Stone, Marshall Harvey (1949). "Postulates for the barycentric calculus". Annali di Matematica Pura ed Applicata 29: 25–30. doi:10.1007/BF02413910. 
  4. Neumann, Walter David (1970). "On the quasivariety of convex subsets of affine spaces". Archiv der Mathematik 21: 11–16. doi:10.1007/BF01220869. 
  5. Świrszcz, Tadeusz (1974). "Monadic functors and convexity". Bulletin l'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques 22: 39–42. 
  6. Herstein, Israel Nathan; Milnor, John (1953). "An Axiomatic Approach to Measurable Utility". Econometrica 21 (2): 291–297. doi:10.2307/1905540. https://www.jstor.org/stable/2938244.