Cylindrification
From HandWiki
Short description: Concept in computability theory, a field of mathematics
In computability theory a cylindrification is a construction that associates a cylindric numbering to each numbering. The concept was first introduced by Yuri L. Ershov in 1973.
Definition
Given a numbering [math]\displaystyle{ \nu }[/math], the cylindrification [math]\displaystyle{ c(\nu) }[/math] is defined as
- [math]\displaystyle{ \mathrm{Domain}(c(\nu)) := \{\langle n, k \rangle | n \in \mathrm{Domain}(\nu)\} }[/math]
- [math]\displaystyle{ c(\nu)\langle n, k \rangle := \nu(n) }[/math]
where [math]\displaystyle{ \langle n, k \rangle }[/math] is the Cantor pairing function.
Note that the cylindrification operation increases the input arity by 1.
Properties
- Given two numberings [math]\displaystyle{ \nu }[/math] and [math]\displaystyle{ \mu }[/math] then [math]\displaystyle{ \nu \le \mu \Leftrightarrow c(\nu) \le_1 c(\mu) }[/math]
- [math]\displaystyle{ \nu \le_1 c(\nu) }[/math]
References
- Yu. L. Ershov, "Theorie der Numerierungen I." Zeitschrift für mathematische Logik und Grundlagen der Mathematik 19, 289-388 (1973).
Original source: https://en.wikipedia.org/wiki/Cylindrification.
Read more |