D-space
}}
In mathematics, a topological space [math]\displaystyle{ X }[/math] is a D-space if for any family [math]\displaystyle{ \{U_x:x\in X\} }[/math] of open sets such that [math]\displaystyle{ x\in U_x }[/math] for all points [math]\displaystyle{ x\in X }[/math], there is a closed discrete subset [math]\displaystyle{ D }[/math] of the space [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ \bigcup_{x\in D}U_x=X }[/math].
History
The notion of D-spaces was introduced by Eric Karel van Douwen and E.A. Michael. It first appeared in a 1979 paper by van Douwen and Washek Frantisek Pfeffer in the Pacific Journal of Mathematics.[1] Whether every Lindelöf and regular topological space is a D-space is known as the D-space problem. This problem is among twenty of the most important problems of set theoretic topology.[2]
Properties
- Every Menger space is a D-space.[3]
- A subspace of a topological linearly ordered space is a D-space iff it is a paracompact space.[4]
References
- ↑ van Douwen, E.; Pfeffer, W. (1979). "Some properties of the Sorgenfrey line and related spaces". Pacific Journal of Mathematics 81 (2): 371–377. doi:10.2140/pjm.1979.81.371. http://msp.org/pjm/1979/81-2/pjm-v81-n2-p07-s.pdf.
- ↑ Elliott., Pearl (2007-01-01). Open problems in topology II. Elsevier. ISBN 9780444522085. OCLC 162136062. https://www.worldcat.org/oclc/162136062.
- ↑ Aurichi, Leandro (2010). "D-Spaces, Topological Games, and Selection Principles". Topology Proceedings 36: 107–122. http://topology.auburn.edu/tp/reprints/v36/tp36009.pdf.
- ↑ van Douwen, Eric; Lutzer, David (1997-01-01). "A note on paracompactness in generalized ordered spaces". Proceedings of the American Mathematical Society 125 (4): 1237–1245. doi:10.1090/S0002-9939-97-03902-6. ISSN 0002-9939. https://www.ams.org/proc/1997-125-04/S0002-9939-97-03902-6/.
Original source: https://en.wikipedia.org/wiki/D-space.
Read more |