DMelt:JMathlab/6 Functions
Functions
The basic arithmetic operations are marked with the usual symbols (+ - * / ) . Exponention is performed with the accent character (^). Multiplication and division precede addition and subtraction; any order of evaluation can be forced by parenthesis.
>> 3.23*(14-2^5)/(15-(3^3-2^3)) ans = 14.535 >> 4.5e-23/0.0000013 ans = 3.4615E-17 >> 17.4^((3-2.13^1.2)^0.16) ans = 13.125 >> 17.23e4/(1.12-17.23e4/(1.12-17.23e4/1.12)) ans = 76919
In addition to these arithmetic operators Jasymca provides operators for comparing numbers
< > >= <= == ~=
and for boolean functions
& | ~
. Logical true is the number 1, false is 0.
>> 1+eps>1 ans = 1 >> 1+eps/2>1 % defines eps ans = 0 >> A=1;B=1;C=1; % semicolon suppresses output. >> !(A&B)|(B&C) == (C~=A) ans = 1
The most common implemented functions are the squareroot (sqrt(x)), the trigonometric functions (sin(x), cos(x), tan(x)) and inverses (atan(x), atan2(y,x)), and the hyperbolic functions (exp(x), log(x)). A large number of additional functions are available, see the list in chapter 4. Some functions are specific to integers, and also work with arbitrary large numbers: primes(Z) expands Z into primefactors, factorial(Z) calculates the factorial function. Modular division is provided by divide and treated later in the context of polynomials.
>> log(sqrt(854)) % natural logarithm ans = 3.375 >> 0.5*log(854) ans = 3.375 >> float(sin(pi/2)) % argument in radian ans = 1 >> gammaln(1234) % log( gamma( x ) ) ans = 7547 >> primes(1000000000000000001) ans = [ 101 9901 999999000001 ] >> factorial(35) ans = 1.0333E40 >> factorial(rat(35)) % to make it exact. ans = 10333147966386144929666651337523200000000
Scalar
Name(Arguments) | Function | Mod | |
---|---|---|---|
float($var$) | $var$ as floating point number | M,O | |
rat($var$) | $var$ as exact number | M,O | |
realpart($var$) | realpart of $var$ | M,O | |
imagpart($var$) | imaginary part of $var$ | M,O | |
abs($var$) | absolute value of $var$ | M,O | |
sign($var$) | sign of $var$ | M,O | |
conj($var$) | $var$ conjugate complex | M,O | |
angle($var$) | angle of $var$ | M,O | |
cfs($var$) [$var_T$]) | continued fraction expansion of $var$ with accuracy $var_T$ | M,O | |
primes(VAR) | VAR decomposed into primes | M,O |
Scalar functions
Name(Arguments) | Function | Mod | |
---|---|---|---|
sqrt($var$) | squareroot | M,O | |
exp($var$) | exponential | M,O | |
log($var$) | natural logarithm | M,O | |
sinh($var$) | hyperbolic sine | O | |
cosh($var$) | hyperbolic cosine | O | |
asinh($var$) | hyperbolic areasine | O | |
acosh($var$) | hyperbolic areacosine | O | |
sech($var$) | hyperbolic secans | O | |
csch($var$) | hyperbolic cosecans | O | |
asech($var$) | hyperbolic areasecans | O | |
acsch($var$) | hyperbolic areacosecans | O | |
sin($var$) | sine (radian) | M,O | |
cos($var$) | cosine (radian) | M,O | |
tan($var$) | tangens (radian) | M,O | |
asin($var$) | arcsine (radian) | M,O | |
acos($var$) | arccosine (radian) | M,O | |
atan($var$) | arctangens (radian) | M,O | |
atan2($var_1$, $var_2$) | arctangens (radian) | M,O | |
sec($var$) | secans (radian) | O | |
csc($var$) | cosecans (radian) | O | |
asec($var$) | arcsecans (radian) | O | |
acsc($var$) | arccosecans (radian) | O | |
factorial(N) | factorial $N!$ | M,O | |
nchoosek(N,K) | binomial coefficient $N \choose K$ | O | |
gamma($var$) | gammafunction | M,O | |
gammaln($var$) | logarithm of gammafunction | M,O |