Decomposition theorem of Beilinson, Bernstein and Deligne

From HandWiki

In mathematics, especially algebraic geometry, the decomposition theorem of Beilinson, Bernstein and Deligne or BBD decomposition theorem is a set of results concerning the cohomology of algebraic varieties. It was originally conjectured by Gelfand and MacPherson.[1]

Statement

Decomposition for smooth proper maps

The first case of the decomposition theorem arises via the hard Lefschetz theorem which gives isomorphisms, for a smooth proper map [math]\displaystyle{ f: X \to Y }[/math] of relative dimension d between two projective varieties[2]

[math]\displaystyle{ - \cup \eta^i : R^{d-i}f_* (\mathbb Q) \stackrel \cong \to R^{d+i} f_*(\mathbb Q). }[/math]

Here [math]\displaystyle{ \eta }[/math] is the fundamental class of a hyperplane section, [math]\displaystyle{ f_* }[/math] is the direct image (pushforward) and [math]\displaystyle{ R^n f_* }[/math] is the n-th derived functor of the direct image. This derived functor measures the n-th cohomologies of [math]\displaystyle{ f^{-1}(U) }[/math], for [math]\displaystyle{ U \subset Y }[/math]. In fact, the particular case when Y is a point, amounts to the isomorphism

[math]\displaystyle{ - \cup \eta^i : H^{d-i} (X, \mathbb Q) \stackrel \cong \to H^{d+i} (X, \mathbb Q). }[/math]

This hard Lefschetz isomorphism induces canonical isomorphisms

[math]\displaystyle{ Rf_* (\mathbb Q) \stackrel \cong \to \bigoplus_{i=-d}^{d} R^{d+i} f_*(\mathbb Q)[-d-i]. }[/math]

Moreover, the sheaves [math]\displaystyle{ R^{d+i} f_* \mathbb Q }[/math] appearing in this decomposition are local systems, i.e., locally free sheaves of Q-vector spaces, which are moreover semisimple, i.e., a direct sum of local systems without nontrivial local subsystems.

Decomposition for proper maps

The decomposition theorem generalizes this fact to the case of a proper, but not necessarily smooth map [math]\displaystyle{ f: X \to Y }[/math] between varieties. In a nutshell, the results above remain true when the notion of local systems is replaced by perverse sheaves.

The hard Lefschetz theorem above takes the following form:[3][4] there is an isomorphism in the derived category of sheaves on Y:

[math]\displaystyle{ {}^p H^{-i} (Rf_* \mathbb Q) \cong {}^p H^{+i} (Rf_* \mathbb Q), }[/math]

where [math]\displaystyle{ Rf_* }[/math] is the total derived functor of [math]\displaystyle{ f_* }[/math] and [math]\displaystyle{ {}^p H^i }[/math] is the i-th truncation with respect to the perverse t-structure.

Moreover, there is an isomorphism

[math]\displaystyle{ Rf_* IC_X^\bullet \cong \bigoplus_i {}^p H^i (Rf_* IC_X^\bullet)[-i]. }[/math]

where the summands are semi-simple perverse-sheaves, meaning they are direct sums of push-forwards of intersection cohomology sheaves.[5]

If X is not smooth, then the above results remain true when [math]\displaystyle{ \mathbb Q[\dim X] }[/math] is replaced by the intersection cohomology complex [math]\displaystyle{ IC }[/math].[3]

Proofs

The decomposition theorem was first proved by Beilinson, Bernstein, and Deligne.[6] Their proof is based on the usage of weights on l-adic sheaves in positive characteristic. A different proof using mixed Hodge modules was given by Saito. A more geometric proof, based on the notion of semismall maps was given by de Cataldo and Migliorini.[7]

For semismall maps, the decomposition theorem also applies to Chow motives.[8]

Applications of the theorem

Cohomology of a Rational Lefschetz Pencil

Consider a rational morphism [math]\displaystyle{ f:X \rightarrow \mathbb{P}^1 }[/math] from a smooth quasi-projective variety given by [math]\displaystyle{ [f_1(x):f_2(x)] }[/math]. If we set the vanishing locus of [math]\displaystyle{ f_1,f_2 }[/math] as [math]\displaystyle{ Y }[/math] then there is an induced morphism [math]\displaystyle{ \tilde{X} = Bl_Y(X) \to \mathbb{P}^1 }[/math]. We can compute the cohomology of [math]\displaystyle{ X }[/math] from the intersection cohomology of [math]\displaystyle{ Bl_Y(X) }[/math] and subtracting off the cohomology from the blowup along [math]\displaystyle{ Y }[/math]. This can be done using the perverse spectral sequence

[math]\displaystyle{ E_2^{l,m} = H^l(\mathbb{P}^1; {}^\mathfrak{p}\mathcal{H}^m(IC_{\tilde{X}}^\bullet(\mathbb{Q})) \Rightarrow IH^{l + m}(\tilde{X};\mathbb{Q}) \cong H^{l+m}(X;\mathbb{Q}) }[/math]

Local invariant cycle theorem

Main page: Local invariant cycle theorem

Let [math]\displaystyle{ f : X \to Y }[/math] be a proper morphism between complex algebraic varieties such that [math]\displaystyle{ X }[/math] is smooth. Also, let [math]\displaystyle{ y_0 }[/math] be a regular value of [math]\displaystyle{ f }[/math] that is in an open ball B centered at [math]\displaystyle{ y }[/math]. Then the restriction map

[math]\displaystyle{ \operatorname{H}^*(f^{-1}(y), \mathbb{Q}) = \operatorname{H}^*(f^{-1}(B), \mathbb{Q}) \to \operatorname{H}^*(f^{-1}(y_0), \mathbb{Q})^{\pi_{1, \textrm{loc}}} }[/math]

is surjective, where [math]\displaystyle{ \pi_{1, \textrm{loc}} }[/math] is the fundamental group of the intersection of [math]\displaystyle{ B }[/math] with the set of regular values of f.[9]

References

  1. Conjecture 2.10. of Sergei Gelfand & Robert MacPherson, Verma modules and Schubert cells: A dictionary.
  2. Deligne, Pierre (1968), "Théoreme de Lefschetz et critères de dégénérescence de suites spectrales", Publ. Math. Inst. Hautes Études Sci. 35: 107–126, doi:10.1007/BF02698925, http://www.numdam.org/item/PMIHES_1968__35__107_0/ 
  3. 3.0 3.1 Beilinson, Bernstein & Deligne 1982, Théorème 6.2.10.. NB: To be precise, the reference is for the decomposition.
  4. MacPherson 1990, Theorem 1.12. NB: To be precise, the reference is for the decomposition.
  5. Beilinson, Bernstein & Deligne 1982, Théorème 6.2.5.
  6. Beilinson, Alexander A.; Bernstein, Joseph; Deligne, Pierre (1982). "Faisceaux pervers" (in French). Astérisque (Société Mathématique de France, Paris) 100. 
  7. de Cataldo, Mark Andrea; Migliorini, Luca (2005). "The Hodge theory of algebraic maps". Annales Scientifiques de l'École Normale Supérieure 38 (5): 693–750. doi:10.1016/j.ansens.2005.07.001. Bibcode2003math......6030D. http://www.numdam.org/item?id=ASENS_2005_4_38_5_693_0. 
  8. de Cataldo, Mark Andrea; Migliorini, Luca (2004), "The Chow motive of semismall resolutions", Math. Res. Lett. 11 (2–3): 151–170, doi:10.4310/MRL.2004.v11.n2.a2 
  9. de Cataldo 2015, Theorem 1.4.1.

Survey Articles

Pedagogical References

  • Hotta, Ryoshi; Takeuchi, Kiyoshi; Tanisaki, Toshiyuki, D-Modules, Perverse Sheaves, and Representation Theory 

Further reading