Distributive law between monads

From HandWiki

In category theory, an abstract branch of mathematics, distributive laws between monads are a way to express abstractly that two algebraic structures distribute one over the other one.

Suppose that [math]\displaystyle{ (S,\mu^S,\eta^S) }[/math] and [math]\displaystyle{ (T,\mu^T,\eta^T) }[/math] are two monads on a category C. In general, there is no natural monad structure on the composite functor ST. However, there is a natural monad structure on the functor ST if there is a distributive law of the monad S over the monad T.

Formally, a distributive law of the monad S over the monad T is a natural transformation

[math]\displaystyle{ l:TS\to ST }[/math]

such that the diagrams

Distributive law monads mult1          Distributive law monads unit1
Distributive law monads mult2          Distributive law monads unit2

commute.

This law induces a composite monad ST with

  • as multiplication: [math]\displaystyle{ STST\xrightarrow{SlT}SSTT\xrightarrow{\mu^S\mu^T}ST }[/math],
  • as unit: [math]\displaystyle{ 1\xrightarrow{\eta^S\eta^T}ST }[/math].

See also

  • distributive law

References

  • Toposes, Triples and Theories. Springer-Verlag. 1985. ISBN 0-387-96115-1. http://www.case.edu/artsci/math/wells/pub/pdf/ttt.pdf. 
  • Distributive law in nLab
  • Böhm, G. (2005). "Internal bialgebroids, entwining structures and corings". Algebraic Structures and Their Representations. Contemporary Mathematics. 376. pp. 207–226. ISBN 9780821836309. 
  • Brzeziński, T.; Majid, S. (1998). "Coalgebra bundles". Comm. Math. Phys. 191 (2): 467–492. doi:10.1007/s002200050274. Bibcode1998CMaPh.191..467B. 
  • Brzezinski, Tomasz; Wisbauer, Robert (2003). Corings and Comodules. London Mathematical Society Lecture Note Series. 309. Cambridge University Press. ISBN 978-0-521-53931-9. https://books.google.com/books?id=Ea1EeaOu_HUC&pg=PP1. 
  • Fox, T.F.; Markl, M. (1997). "Distributive laws, bialgebras, and cohomology". Operads: Proceedings of Renaissance Conferences. Contemporary Mathematics. 202. American Mathematical Society. pp. 167–205. ISBN 9780821805138. 
  • Lack, S. (2004). "Composing PROPS". Theory Appl. Categ. 13 (9): 147–163. http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html. 
  • Lack, S.; Street, R. (2002). "The formal theory of monads II". J. Pure Appl. Algebra 175 (1–3): 243–265. doi:10.1016/S0022-4049(02)00137-8. 
  • Markl, M. (1996). "Distributive laws and Koszulness". Annales de l'Institut Fourier 46 (2): 307–323. doi:10.5802/aif.1516. 
  • Street, R. (1972). "The formal theory of monads". J. Pure Appl. Alg. 2 (2): 149–168. doi:10.1016/0022-4049(72)90019-9. 
  • Škoda, Z. (2004). "Distributive laws for monoidal categories". arXiv:math/0406310.
  • — (2007). "Equivariant monads and equivariant lifts versus a 2-category of distributive laws". arXiv:0707.1609 [math.CT].
  • — (2008). "Bicategory of entwinings". arXiv:0805.4611 [math.RA].
  • (2009). "Some equivariant constructions in noncommutative geometry". Georgian Math. J. 16 (1): 183–202. doi:10.1515/GMJ.2009.183. 
  • Wisbauer, R. (2008). "Algebras versus coalgebras". Appl. Categ. Structures 16 (1–2): 255–295. doi:10.1007/s10485-007-9076-5.