Earth:Main Uralian Fault
The Main Uralian Fault (MUF) runs north–south through the middle of the Ural Mountains for over 2,000 km. It separates both Europe from Asia and the three, or four, western megazones of the Urals from the three eastern megazones: namely the Pre-Uralian Foredeep, West Uralian, and the Central Uralian to the west, and the Tagil-Magnitogorskian, East Uralian, and Transuralian to the east. The Russian Plate is often included as the fourth megazone to the west. On the west side of the fault the rocks represent the sediments of the eastern continental margin zone of the European Plate (Baltica). On the east the rocks are accreted oceanic and island arc basalts, ultramafics and volcanics as well as the sediments of the western continental margin zones of the Siberian craton (Angara Plate) on the north and the Kazakhstan craton on the south.
Formation
The Main Uralian Fault formed in the Riphean (early Neoproterozoic) in the breakup of the supercontinent Rodinia as a rift valley between the Baltica and the Angara Plate (Siberian craton). As these two plates pulled apart eventually a mid-ocean ridge formed. The ridge was of basic (basalt) and ultramafic material. Some 500 million years later, in the Silurian, a subduction zone formed on the western margin of the Angara Plate, which at the time was on the western edge of Gondwana, and the oceanic plate was subducted underneath the Angara Plate, accreting some of the basalts and ultramafics onto the Angara Plate. Sialic sediments were metamorphosed, melted and intruded into the rocks above as granites. By the early Carboniferous the oceanic plates were completed subducted and the eastern margin of Baltica, then on the eastern edge of Laurussia began to collide with the western edge of Angara. In the south the western edge of Kazakhstania may have been pushed under Baltica. This collision in known generally as the Variscan orogeny, and specifically as to the Urals as the Uralian orogeny The collision lasted nearly 90 million years from the Carboniferous to the early Triassic.[1][2][3][4] The MUF remained active as the plates ground against each other as Pangea was formed and the Ural Mountains were raised up.
Dip
There is seismic evidence that the Main Uralian Fault extends very deep, in excess of 15 kilometres (9.3 mi), into the crust and dips to the east as a result of the subduction zone that formed in the Silurian along the western margin of the Siberian craton. This is supported by evidence of a north-south magmatic axis in the southern Urals that runs through the East Uralian megazone.[5]
Notes
- ↑ D. Brown & H. Echtler. The Urals. In: R. C. Selley, L. R. M. Cocks & I. R. Plimer (eds.), Encyclopedia of Geology, Vol. 2. Elsevier, 2005. P 86-95.
- ↑ L. R. M. Cocks & T. H. Torsvik. European geography in a global context from the Vendian to the end of the Palaeozoic . In Gee, D. G. & Stephenson, R. A. (eds), European Lithosphere Dynamics. Geological Society, London, Memoirs, 32, 83–95.
- ↑ Victor N. Puchkov. The evolution of the Uralian orogen. Geological Society, London, Special Publications, 2009; v. 327; p. 161-195.
- ↑ D. Brown et al. Mountain building processes during continent–continent collision in the Uralides. Earth-Science Reviews, Volume 89, Issues 3-4, August 2008, Pages 177-195.
- ↑ Fershtater, G.B., Montero, P., Borodina, N.S., Pushkarev, E.V., Smirnov, V.N., and Bea, F. (1997). "Uralian magmatism: an overview". Tectonophysics 276 (1–4): 87–102. doi:10.1016/S0040-1951(97)00049-8. Bibcode: 1997Tectp.276...87F.
Further reading
- Brown, D., Juhlin, C., Alvarez-Marron, J., Perez-Estaun, A., and Oslianski, A. (1998). "Crustal-scale structure and evolution of an arc-continent collision zone in the southern Urals, Russia". Tectonics 17 (2): 158–171. doi:10.1029/98tc00129. Bibcode: 1998Tecto..17..158B.
- Juhlin, C., Knapp, J. H., Kashubin, S., and Bliznetsov, M. (1996). "Crustal evolution of the Middle Urals based on seismic reflection and refraction data". Tectonophysics 264 (1–4): 21–34. doi:10.1016/S0040-1951(96)00115-1. Bibcode: 1996Tectp.264...21J. http://www.geol.sc.edu/knapp/Publications/Juhlin%20et%20al%2096.pdf.
- Juhlin, C. Friberg, M., Echtler, H.P., Hismatulin, T., Rybalka, A., Green, A.G., and Ansorge, J. (1998). "Crustal structure of the Middle Urals: Results from the (ESRU) Europrobe seismic reflection profiling in the Urals experiments". Tectonics 17 (5): 710–725. doi:10.1029/98TC02762. Bibcode: 1998Tecto..17..710J.
- Kruse, S.; McNutt, M. (1988). "Compensation of Paleozoic orogens: a comparison of the Urals to the Appalachians". Tectonophysics 154 (1–2): 1–17. doi:10.1016/0040-1951(88)90224-7. Bibcode: 1988Tectp.154....1K.
- Poupinet, G., Thouvenot, F., Zolotov, E.E., Matte, Ph., Egorkin, A.V., and Rackitiv, V.A. (1997). "Teleseismic tomography across the middle Urals: lithospheric trace of an ancient continental collision". Tectonophysics 276 (1): 19–33. doi:10.1016/S0040-1951(97)00045-0. Bibcode: 1997Tectp.276...19P.
- Puchkov, V.N. (1987). "New Data on the Tectonics of the Urals". Geotectonics 21: 108–116.
- Puchkov, V.N. (1993). "The Paleoceanic Structures of the Ural mountains". Geotectonics 27: 184–196.
- Puchkov, V.N. (1997). "Tectonics of the Urals: Modern Concepts". Geotectonics 31: 294–312.
- Zonenshain, L., Kuzmin, M. and Natapov, L. (1990), "Uralian Foldbelt", in Page, B. M., Geology of the USSR: A Plate Tectonic Synthesis, Geodynamics series, v. 21, Washington, D.C.: American Geophysical Union, pp. 27–54, ISBN 978-0-87590-521-1
External links
- Map of Main Uralian Fault showing megazones Zavacky, J. "The Urals: A Late Paleozoic Mountain Belt"
Original source: https://en.wikipedia.org/wiki/Main Uralian Fault.
Read more |