Eisenstein–Kronecker number
In mathematics, Eisenstein–Kronecker numbers are an analogue for imaginary quadratic fields of generalized Bernoulli numbers.[1][2][3] They are defined in terms of classical Eisenstein–Kronecker series, which were studied by Kenichi Bannai and Shinichi Kobayashi using the Poincaré bundle.[3][4]
Eisenstein–Kronecker numbers are algebraic and satisfy congruences that can be used in the construction of two-variable p-adic L-functions.[3][5] They are related to critical L-values of Hecke characters.[1][5]
Definition
When A is the area of the fundamental domain of [math]\displaystyle{ \Gamma }[/math] divided by [math]\displaystyle{ \pi }[/math], where [math]\displaystyle{ \Gamma }[/math] is a lattice in [math]\displaystyle{ \mathbb{C} }[/math]:[5]
[math]\displaystyle{ e_{a,b}^{*}(z_0,w_0):=\sum_{\gamma\in\Gamma\setminus\{-z_0\}}\frac{(\bar{z_0}+\bar{\gamma})^a}{(z_0+\gamma)^b}\langle\gamma,w_0\rangle_\Gamma, }[/math]
when [math]\displaystyle{ \mathbb{N}_0:=\mathbb{N}\cup\{0\},
\,\{a,b\in\mathbb{N}_0:b \gt a+2\},\,z_0,w_0\in\mathbb{C}, }[/math]
where [math]\displaystyle{ \langle z,w\rangle_\Gamma:=e^\frac{z\overline{w}-w\overline{z}}{A} }[/math] and [math]\displaystyle{ \overline{z} }[/math] is the complex conjugate of z.
References
- ↑ 1.0 1.1 Bannai, Kenichi; Kobayashi, Shinichi (2007), "Algebraic theta functions and Eisenstein-Kronecker numbers", in Hashimoto, Kiichiro, Proceedings of the Symposium on Algebraic Number Theory and Related Topics, RIMS Kôkyuroku Bessatsu, B4, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 63–77, Bibcode: 2007arXiv0709.0640B
- ↑ Bannai, Kenichi; Kobayashi, Shinichi; Tsuji, Takeshi (2009), "Realizations of the elliptic polylogarithm for CM elliptic curves", in Asada, Mamoru; Nakamura, Hiroaki; Takahashi, Hiroki, Algebraic number theory and related topics 2007, RIMS Kôkyuroku Bessatsu, B12, Res. Inst. Math. Sci. (RIMS), Kyoto, pp. 33–50
- ↑ 3.0 3.1 3.2 Charollois, Pierre; Sczech, Robert (2016). "Elliptic Functions According to Eisenstein and Kronecker: An Update" (in en). EMS Newsletter 2016-9 (101): 8–14. doi:10.4171/NEWS/101/4. ISSN 1027-488X. http://www.ems-ph.org/doi/10.4171/NEWS/101/4.
- ↑ Sprang, Johannes (2019). "Eisenstein–Kronecker Series via the Poincaré bundle" (in en). Forum of Mathematics, Sigma 7: e34. doi:10.1017/fms.2019.29. ISSN 2050-5094. https://www.cambridge.org/core/product/identifier/S205050941900029X/type/journal_article.
- ↑ 5.0 5.1 5.2 Bannai, Kenichi; Kobayashi, Shinichi (2010). "Algebraic theta functions and the p-adic interpolation of Eisenstein-Kronecker numbers". Duke Mathematical Journal 153 (2). doi:10.1215/00127094-2010-024. ISSN 0012-7094. https://projecteuclid.org/journals/duke-mathematical-journal/volume-153/issue-2/Algebraic-theta-functions-and-the-p-adic-interpolation-of-Eisenstein/10.1215/00127094-2010-024.full.
Original source: https://en.wikipedia.org/wiki/Eisenstein–Kronecker number.
Read more |