Empirical dynamic modeling

From HandWiki

Empirical dynamic modeling (EDM) is a framework for analysis and prediction of nonlinear dynamical systems. Applications include population dynamics,[improper synthesis?][1][2][3][4][5][6] ecosystem service,[7] medicine,[8] neuroscience,[9][10][11] dynamical systems,[12][13][14] geophysics,[15][16][17] and human-computer interaction.[18] EDM was originally developed by Robert May and George Sugihara. It can be considered a methodology for data modeling, predictive analytics, dynamical system analysis, machine learning and time series analysis.[citation needed]

Description

Mathematical models have tremendous power to describe observations of real-world systems. They are routinely used to test hypothesis, explain mechanisms and predict future outcomes. However, real-world systems are often nonlinear and multidimensional, in some instances rendering explicit equation-based modeling problematic. Empirical models, which infer patterns and associations from the data instead of using hypothesized equations, represent a natural and flexible framework for modeling complex dynamics.[citation needed]

Donald DeAngelis and Simeon Yurek illustrated that canonical statistical models are ill-posed when applied to nonlinear dynamical systems.[19] A hallmark of nonlinear dynamics is state-dependence: system states are related to previous states governing transition from one state to another. EDM operates in this space, the multidimensional state-space of system dynamics rather than on one-dimensional observational time series. EDM does not presume relationships among states, for example, a functional dependence, but projects future states from localised, neighboring states. EDM is thus a state-space, nearest-neighbors paradigm where system dynamics are inferred from states derived from observational time series. This provides a model-free representation of the system naturally encompassing nonlinear dynamics.[citation needed]

A cornerstone of EDM is recognition that time series observed from a dynamical system can be transformed into higher-dimensional state-spaces by time-delay embedding with Takens's theorem. The state-space models are evaluated based on in-sample fidelity to observations, conventionally with Pearson correlation between predictions and observations.[citation needed]

Methods

Primary EDM algorithms include Simplex projection,[20] Sequential locally weighted global linear maps (S-Map) projection,[21] Multivariate embedding in Simplex or S-Map,[1] Convergent cross mapping (CCM),[22] and Multiview Embeding,[23] described below.

Nomenclature
Parameter Description
E embedding dimension
k number of nearest neighbors
Tp prediction interval
X observed time series
yE vector of lagged observations
θ0 S-Map localization
XtE=(Xt,Xt1,,XtE+1)E lagged embedding vectors
v norm of v
N={N1,,Nk} list of nearest neighbors

Nearest neighbors are found according to: NN(y,X,k)=XNiEyXNjEy if 1ijk

Simplex

Simplex projection[20][24][25][26] is a nearest neighbor projection. It locates the k nearest neighbors to the location in the state-space from which a prediction is desired. To minimize the number of free parameters k is typically set to E+1 defining an E+1 dimensional simplex in the state-space. The prediction is computed as the average of the weighted phase-space simplex projected Tp points ahead. Each neighbor is weighted proportional to their distance to the projection origin vector in the state-space.[citation needed]

  1. Find k nearest neighbor: NkNN(y,X,k)
  2. Define the distance scale: dXN1Ey
  3. Compute weights: For{i=1,,k} : wiexp(XNiEy/d)
  4. Average of state-space simplex: y^i=1k(wiXNi+Tp)/i=1kwi

S-Map

S-Map[21] extends the state-space prediction in Simplex from an average of the E+1 nearest neighbors to a linear regression fit to all neighbors, but localised with an exponential decay kernel. The exponential localisation function is F(θ)=exp(θd/D), where d is the neighbor distance and D the mean distance. In this way, depending on the value of θ, neighbors close to the prediction origin point have a higher weight than those further from it, such that a local linear approximation to the nonlinear system is reasonable. This localisation ability allows one to identify an optimal local scale, in-effect quantifying the degree of state dependence, and hence nonlinearity of the system.[citation needed]

Another feature of S-Map is that for a properly fit model, the regression coefficients between variables have been shown to approximate the gradient (directional derivative) of variables along the manifold.[27] These Jacobians represent the time-varying interaction strengths between system variables.

  1. Find k nearest neighbor: NNN(y,X,k)
  2. Sum of distances: D1ki=1kXNiEy
  3. Compute weights: For{i=1,,k} : wiexp(θXNiEy/D)
  4. Reweighting matrix: Wdiag(wi)
  5. Design matrix: A[1XN1XN11XN1E+11XN2XN21XN2E+11XNkXNk1XNkE+1]
  6. Weighted design matrix: AWA
  7. Response vector at Tp: b[XN1+TpXN2+TpXNk+Tp]
  8. Weighted response vector: bWb
  9. Least squares solution (SVD): c^argmincAcb22
  10. Local linear model c^ is prediction: y^c^0+i=1Ec^iyi

Multivariate Embedding

Multivariate Embedding[1][12][28] recognizes that time-delay embeddings are not the only valid state-space construction. In Simplex and S-Map one can generate a state-space from observational vectors, or time-delay embeddings of a single observational time series, or both.

Convergent Cross Mapping

Convergent cross mapping (CCM)[22] leverages a corollary to the Generalized Takens Theorem[12] that it should be possible to cross predict or cross map between variables observed from the same system. Suppose that in some dynamical system involving variables X and Y, X causes Y. Since X and Y belong to the same dynamical system, their reconstructions (via embeddings) Mx, and My, also map to the same system.

The causal variable X leaves a signature on the affected variable Y, and consequently, the reconstructed states based on Y can be used to cross predict values of X. CCM leverages this property to infer causality by predicting X using the My library of points (or vice versa for the other direction of causality), while assessing improvements in cross map predictability as larger and larger random samplings of My are used. If the prediction skill of X increases and saturates as the entire My is used, this provides evidence that X is casually influencing Y.

Multiview Embedding

Multiview Embedding[23] is a Dimensionality reduction technique where a large number of state-space time series vectors are combitorially assessed towards maximal model predictability.

Extensions

Extensions to EDM techniques include:

  • Generalized Theorems for Nonlinear State Space Reconstruction[12]
  • Extended Convergent Cross Mapping[13]
  • Dynamic stability[4]
  • S-Map regularization[29]
  • Visual analytics with EDM[30]
  • Convergent Cross Sorting[31]
  • Expert system with EDM hybrid[32]
  • Sliding windows based on the extended convergent cross-mapping[33]
  • Empirical Mode Modeling[17]
  • Accounting for missing data and variable step sizes[34]
  • Accounting for observation noise[35]
  • Hierarchical Bayesian EDM via Gaussian processes[36]
  • Optimal control via Empirical dynamic programming[37]
  • Multiview distance regularised S-map[38]

See also

References

  1. 1.0 1.1 1.2 Dixon, Paul A.; Milicich, Maria J.; Sugihara, George (5 March 1999). "Episodic Fluctuations in Larval Supply". Science 283 (5407): 1528–1530. doi:10.1126/science.283.5407.1528. PMID 10066174. Bibcode1999Sci...283.1528D. 
  2. Ye, Hao; Beamish, Richard J.; Glaser, Sarah M.; Grant, Sue C. H.; Hsieh, Chih-hao; Richards, Laura J.; Schnute, Jon T.; Sugihara, George (31 March 2015). "Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling". Proceedings of the National Academy of Sciences 112 (13): E1569-76. doi:10.1073/pnas.1417063112. PMID 25733874. Bibcode2015PNAS..112E1569Y. 
  3. Deyle, Ethan R.; Fogarty, Michael; Hsieh, Chih-hao; Kaufman, Les; MacCall, Alec D.; Munch, Stephan B.; Perretti, Charles T.; Ye, Hao et al. (16 April 2013). "Predicting climate effects on Pacific sardine". Proceedings of the National Academy of Sciences 110 (16): 6430–6435. doi:10.1073/pnas.1215506110. PMID 23536299. Bibcode2013PNAS..110.6430D. 
  4. 4.0 4.1 Ushio, Masayuki; Hsieh, Chih-hao; Masuda, Reiji; Deyle, Ethan R; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio (15 February 2018). "Fluctuating interaction network and time-varying stability of a natural fish community". Nature 554 (7692): 360–363. doi:10.1038/nature25504. PMID 29414940. Bibcode2018Natur.554..360U. 
  5. Deyle, Ethan R.; May, Robert M.; Munch, Stephan B.; Sugihara, George (13 January 2016). "Tracking and forecasting ecosystem interactions in real time". Proceedings of the Royal Society B: Biological Sciences 283 (1822). doi:10.1098/rspb.2015.2258. PMID 26763700. 
  6. Rogers, Tanya L.; Munch, Stephan B.; Stewart, Simon D.; Palkovacs, Eric P.; Giron-Nava, Alfredo; Matsuzaki, Shin-ichiro S.; Symons, Celia C. (August 2020). "Trophic control changes with season and nutrient loading in lakes". Ecology Letters 23 (8): 1287–1297. doi:10.1111/ele.13532. PMID 32476249. PMC 7384198. Bibcode2020EcolL..23.1287R. https://escholarship.org/uc/item/90c25815. 
  7. Park, Joseph; Saberski, Erik; Stabenau, Erik; Sugihara, George (5 August 2021). "Dynamics of Florida milk production and total phosphate in Lake Okeechobee". PLOS ONE 16 (8). doi:10.1371/journal.pone.0248910. PMID 34351917. Bibcode2021PLoSO..1648910P. 
  8. Sugihara, G; Allan, W; Sobel, D; Allan, K D (19 March 1996). "Nonlinear control of heart rate variability in human infants.". Proceedings of the National Academy of Sciences 93 (6): 2608–2613. doi:10.1073/pnas.93.6.2608. PMID 8637921. Bibcode1996PNAS...93.2608S. 
  9. McBride, Joseph C.; Zhao, Xiaopeng; Munro, Nancy B.; Jicha, Gregory A.; Schmitt, Frederick A.; Kryscio, Richard J.; Smith, Charles D.; Jiang, Yang (2015). "Sugihara causality analysis of scalp EEG for detection of early Alzheimer's disease". NeuroImage: Clinical 7: 258–265. doi:10.1016/j.nicl.2014.12.005. PMID 25610788. 
  10. Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro (19 November 2015). "Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding". PLOS Computational Biology 11 (11). doi:10.1371/journal.pcbi.1004537. PMID 26584045. Bibcode2015PLSCB..11E4537T. 
  11. Watanakeesuntorn, Wassapon; Takahashi, Keichi; Ichikawa, Kohei; Park, Joseph; Sugihara, George; Takano, Ryousei; Haga, Jason; Pao, Gerald M. (2020). "Massively Parallel Causal Inference of Whole Brain Dynamics at Single Neuron Resolution". 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). pp. 196–205. doi:10.1109/ICPADS51040.2020.00035. ISBN 978-1-7281-9074-7. 
  12. 12.0 12.1 12.2 12.3 Deyle, Ethan R.; Sugihara, George (31 March 2011). "Generalized Theorems for Nonlinear State Space Reconstruction". PLOS ONE 6 (3). doi:10.1371/journal.pone.0018295. PMID 21483839. Bibcode2011PLoSO...618295D. 
  13. 13.0 13.1 Ye, Hao; Deyle, Ethan R.; Gilarranz, Luis J.; Sugihara, George (5 October 2015). "Distinguishing time-delayed causal interactions using convergent cross mapping". Scientific Reports 5 (1). doi:10.1038/srep14750. PMID 26435402. Bibcode2015NatSR...514750Y. 
  14. Cenci, Simone; Saavedra, Serguei (29 April 2019). "Non-parametric estimation of the structural stability of non-equilibrium community dynamics". Nature Ecology & Evolution 3 (6): 912–918. doi:10.1038/s41559-019-0879-1. PMID 31036898. Bibcode2019NatEE...3..912C. 
  15. Tsonis, Anastasios A.; Deyle, Ethan R.; May, Robert M.; Sugihara, George; Swanson, Kyle; Verbeten, Joshua D.; Wang, Geli (17 March 2015). "Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature". Proceedings of the National Academy of Sciences 112 (11): 3253–3256. doi:10.1073/pnas.1420291112. PMID 25733877. Bibcode2015PNAS..112.3253T. 
  16. van Nes, Egbert H.; Scheffer, Marten; Brovkin, Victor; Lenton, Timothy M.; Ye, Hao; Deyle, Ethan; Sugihara, George (May 2015). "Causal feedbacks in climate change". Nature Climate Change 5 (5): 445–448. doi:10.1038/nclimate2568. Bibcode2015NatCC...5..445V. 
  17. 17.0 17.1 Park, Joseph; Pao, Gerald M.; Sugihara, George; Stabenau, Erik; Lorimer, Thomas (May 2022). "Empirical mode modeling: A data-driven approach to recover and forecast nonlinear dynamics from noisy data". Nonlinear Dynamics 108 (3): 2147–2160. doi:10.1007/s11071-022-07311-y. Bibcode2022NonDy.108.2147P. 
  18. van Berkel, Niels; Dennis, Simon; Zyphur, Michael; Li, Jinjing; Heathcote, Andrew; Kostakos, Vassilis (4 July 2021). "Modeling interaction as a complex system". Human–Computer Interaction 36 (4): 279–305. doi:10.1080/07370024.2020.1715221. 
  19. DeAngelis, Donald L.; Yurek, Simeon (31 March 2015). "Equation-free modeling unravels the behavior of complex ecological systems". Proceedings of the National Academy of Sciences 112 (13): 3856–3857. doi:10.1073/pnas.1503154112. PMID 25829536. 
  20. 20.0 20.1 Sugihara, George; May, Robert M. (April 1990). "Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series". Nature 344 (6268): 734–741. doi:10.1038/344734a0. PMID 2330029. Bibcode1990Natur.344..734S. 
  21. 21.0 21.1 Sugihara, George (15 September 1994). "Nonlinear forecasting for the classification of natural time series". Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 348 (1688): 477–495. doi:10.1098/rsta.1994.0106. Bibcode1994RSPTA.348..477S. 
  22. 22.0 22.1 Sugihara, George; May, Robert; Ye, Hao; Hsieh, Chih-hao; Deyle, Ethan; Fogarty, Michael; Munch, Stephan (26 October 2012). "Detecting Causality in Complex Ecosystems". Science 338 (6106): 496–500. doi:10.1126/science.1227079. PMID 22997134. Bibcode2012Sci...338..496S. 
  23. 23.0 23.1 Ye, Hao; Sugihara, George (26 August 2016). "Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality". Science 353 (6302): 922–925. doi:10.1126/science.aag0863. PMID 27563095. Bibcode2016Sci...353..922Y. 
  24. Takens, Floris (1981). "Detecting strange attractors in turbulence". Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. 898. pp. 366–381. doi:10.1007/BFb0091924. ISBN 978-3-540-11171-9. 
  25. Casdagli, Martin (May 1989). "Nonlinear prediction of chaotic time series". Physica D: Nonlinear Phenomena 35 (3): 335–356. doi:10.1016/0167-2789(89)90074-2. Bibcode1989PhyD...35..335C. 
  26. Judd, Kevin; Mees, Alistair (September 1998). "Embedding as a modeling problem". Physica D: Nonlinear Phenomena 120 (3–4): 273–286. doi:10.1016/S0167-2789(98)00089-X. Bibcode1998PhyD..120..273J. 
  27. Deyle, Ethan R.; May, Robert M.; Munch, Stephan B.; Sugihara, George (13 January 2016). "Tracking and forecasting ecosystem interactions in real time". Proceedings of the Royal Society B: Biological Sciences 283 (1822). doi:10.1098/rspb.2015.2258. PMID 26763700. 
  28. Sauer, Tim; Yorke, James A.; Casdagli, Martin (November 1991). "Embedology". Journal of Statistical Physics 65 (3–4): 579–616. doi:10.1007/BF01053745. Bibcode1991JSP....65..579S. 
  29. Cenci, Simone; Sugihara, George; Saavedra, Serguei (May 2019). "Regularized S-map for inference and forecasting with noisy ecological time series". Methods in Ecology and Evolution 10 (5): 650–660. doi:10.1111/2041-210X.13150. Bibcode2019MEcEv..10..650C. 
  30. Natsukawa, Hiroaki; Deyle, Ethan R.; Pao, Gerald M.; Koyamada, Koji; Sugihara, George (February 2021). "A Visual Analytics Approach for Ecosystem Dynamics based on Empirical Dynamic Modeling". IEEE Transactions on Visualization and Computer Graphics 27 (2): 506–516. doi:10.1109/TVCG.2020.3028956. PMID 33026998. Bibcode2021ITVCG..27..506N. 
  31. Breston, Leo; Leonardis, Eric J.; Quinn, Laleh K.; Tolston, Michael; Wiles, Janet; Chiba, Andrea A. (13 October 2021). "Convergent cross sorting for estimating dynamic coupling". Scientific Reports 11 (1). doi:10.1038/s41598-021-98864-2. PMID 34645847. Bibcode2021NatSR..1120374B. 
  32. Deyle, Ethan R.; Bouffard, Damien; Frossard, Victor; Schwefel, Robert; Melack, John; Sugihara, George (2022). "A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures". Proceedings of the National Academy of Sciences 119 (26). doi:10.1073/pnas.2102466119. PMID 35733249. Bibcode2022PNAS..11902466D. 
  33. Ge, Xinlei; Lin, Aijing (April 2021). "Dynamic causality analysis using overlapped sliding windows based on the extended convergent cross-mapping". Nonlinear Dynamics 104 (2): 1753–1765. doi:10.1007/s11071-021-06362-x. Bibcode2021NonDy.104.1753G. 
  34. Johnson, Bethany; Munch, Stephan B. (June 2022). "An empirical dynamic modeling framework for missing or irregular samples". Ecological Modelling 468. doi:10.1016/j.ecolmodel.2022.109948. Bibcode2022EcMod.46809948J. 
  35. Esguerra, Dylan; Munch, Stephan B. (June 2024). "Accounting for observation noise in equation-free forecasting: The hidden-Markov S-map". Methods in Ecology and Evolution 15: 1347-1359. doi:10.1111/2041-210X.14337. 
  36. Munch, Stephan B.; Poynor, Valerie; Arriaza, Juan Lopez (December 2017). "Circumventing structural uncertainty: A Bayesian perspective on nonlinear forecasting for ecology". Ecological Complexity 32: 134–143. doi:10.1016/j.ecocom.2016.08.006. Bibcode2017EcoCm..32..134M. 
  37. Brias, Antoine; Munch, Stephan B. (February 2021). "Ecosystem based multi-species management using Empirical Dynamic Programming". Ecological Modelling 441. doi:10.1016/j.ecolmodel.2020.109423. Bibcode2021EcMod.44109423B. 
  38. Chang, Chun-Wei; Miki, Takeshi; Ushio, Masayuki; Ke, Po-Ju; Lu, Hsiao-Pei; Shiah, Fuh-Kwo; Hsieh, Chih-hao (December 2021). "Reconstructing large interaction networks from empirical time series data". Ecology Letters 24 (12): 2763–2774. doi:10.1111/ele.13897. PMID 34601794. Bibcode2021EcolL..24.2763C. 

Further reading

Animations
Online books or lecture notes
  • EDM Introduction. Introduction with video, examples and references.
  • Berglund, Nils (2001). Geometrical theory of dynamical systems (Preprint). 
  • Arxiv preprint server has daily submissions of (non-refereed) manuscripts in dynamical systems.
Research groups