Engineering:Diffusion metamaterial

From HandWiki
Short description: Subset of the metamaterial family

Diffusion metamaterials[1][2] are a subset of the metamaterial family, which primarily comprises thermal metamaterials, particle diffusion metamaterials, and plasma diffusion metamaterials. Currently, thermal metamaterials play a pivotal role within the realm of diffusion metamaterials. The applications of diffusion metamaterials span various fields, including heat management, chemical sensing, and plasma control, offering capabilities that surpass those of traditional materials and devices.

History

In 1968, Veselago introduced the concept of negative refractive index.[3] Subsequently, John Pendry recognized the potential of using artificial microstructures to achieve unconventional electromagnetic properties. He conducted pioneering research involving metal wire arrays[4] and split ring structures.[5] His groundbreaking contributions[4][5] ignited a surge of interest in the field of electromagnetic or optical metamaterials. Researchers began to focus on manipulating transverse waves through metamaterials, a concept governed by Maxwell's equations, which serve as wave equations.

In 2000, Ping Sheng unveiled the phenomenon of local resonance in sonic materials,[6] which possess longitudinal wave properties. This discovery expanded the horizons of metamaterial research to encompass other wave systems. This extension included control equations such as the acoustic wave equation and elastic wave equation.

In 2008, Ji-Ping Huang extended the application of metamaterials to thermal diffusion systems.[7] His initial research focused on steady-state heat conduction equations. Using transformation theory, he introduced the concept of thermal cloaking.[7] In 2013, the application of metamaterials was further extended to particle diffusion systems, with the first proposal of particle diffusion cloaking under low diffusivity conditions.[8] Subsequently, in 2022, metamaterials were applied to plasma diffusion systems,[9] where transformation theory was used to design functional devices capable of showcasing several novel phenomena, including cloaking.

Contemporary researchers can categorize the realm of metamaterials into three primary branches,[1] each defined by its governing equations: electromagnetic and optical wave metamaterials which involve Maxwell's equations for transverse waves; other wave metamaterials which involve various wave equations for longitudinal and transverse waves; and diffusion metamaterials which involve the diffusion processes described by diffusion equations.[1][10]

Basic theory

Transformation theory

It denotes a theoretical methodology that links spatial geometric structural parameters with physical properties such as thermal conductivity. This is achieved through the application of coordinate transformations between two separate spatial domains.[7] Its roots can be traced back to the realm of transformation optics, originally conceived for wave systems.[11]

Diffusion equations

Diffusion metamaterials can be crafted by explicitly solving the relevant diffusion equations while considering suitable boundary conditions, such as thermal conduction equations.[12][13]

Effective medium theory

Prominent examples of effective medium theories include the Maxwell-Garnett theory[14][15] and the Bruggeman theory.[16]

Scattering cancellation theory

This method is proposed based on the cancellation of relevant physical quantities, such as temperature disturbances.[12][13]

Phase transition theory

This method relies on various types of phase transitions and can be employed to craft diffusion metamaterials featuring novel properties, such as a zero-energy-consumption thermostat[17] and thermal meta-terrace.[18]

Computer simulation

It encompasses finite element simulations,[19] machine learning,[20] topology optimization,[21] particle swarm optimization,[22] and similar techniques.[23]

Characteristic length

In accordance with the definition, metamaterials must possess a characteristic length. For example, electromagnetic or optical metamaterials employ incident wavelengths as their characteristic lengths, and their structural elements are (significantly) smaller in size compared to these characteristic lengths. This design principle enables us to gain insights into the unique properties of these artificially engineered materials through the lens of effective medium theory.[1]

Similarly, diffusion metamaterials possess analogous characteristic length scales.[1] Taking thermal metamaterials as an example, the characteristic length for conductive thermal metamaterials is the thermal diffusion length.[24] Convective thermal metamaterials are characterized by the migration length of the fluid, while radiative thermal metamaterials hinge on the wavelength of thermal radiation.

Applications

Diffusion metamaterials have found multiple practical applications. In the field of thermal metamaterials, the thermal cloak structure has been utilized for providing infrared thermal protection in underground shelters.[25] Designs of thermal metamaterials have been used in managing heat in electronic devices,[26] and films with radiative cooling have been used in commercial applications.[27]

References

  1. 1.0 1.1 1.2 1.3 1.4 F. B. Yang, Z. R. Zhang, L. J. Xu, Z. F. Liu, P. Jin, P. F. Zhuang, M. Lei, J. R. Liu, J.-H. Jiang, X. P. Ouyang, F. Marchesoni, J. P. Huang (2023). "Controlling mass and energy diffusion with metamaterials". Rev. Mod. Phys.: in press. 
  2. Z. R. Zhang, L. J. Xu, T. Qu, M. Lei, Z.-K. Lin, X. P. Ouyang, J.-H. Jiang, J. P. Huang (2023). "Diffusion metamaterials". Nat. Rev. Phys. 5 (4): 218. doi:10.1038/s42254-023-00565-4. Bibcode2023NatRP...5..218Z. 
  3. V. G. Veselago (1968). "The electrodynamics of substances with simultaneously negative values of ϵ and μ". Sov. Phys. Usp. 10: 509. doi:10.1070/PU1968v010n04ABEH003699. 
  4. 4.0 4.1 J. B. Pendry, A. Holden, W. Stewart, I. Youngs (1996). "Extremely low frequency plasmons in metallic mesostructures". Phys. Rev. Lett. 76 (25): 4773–4776. doi:10.1103/PhysRevLett.76.4773. PMID 10061377. Bibcode1996PhRvL..76.4773P. 
  5. 5.0 5.1 J. B. Pendry, A. Holden, D. Robbins, W. Stewart (1999). "Magnetism from conductors and enhanced nonlinear phenomena". IEEE Trans. Microw. Theory Tech. 47 (11): 2075–2084. doi:10.1109/22.798002. Bibcode1999ITMTT..47.2075P. 
  6. Z. Y. Liu, X. X. Zhang, Y. W. Mao, Y. Y. Zhu, Z. Y. Yang, C. T. Chan, P. Sheng (2000). "Locally resonant sonic materials". Science 289 (5485): 1734–1736. doi:10.1126/science.289.5485.1734. PMID 10976063. Bibcode2000Sci...289.1734L. 
  7. 7.0 7.1 7.2 C. Z. Fan, Y. Gao, J. P. Huang (2008). "Shaped graded materials with an apparent negative thermal conductivity". Appl. Phys. Lett. 92 (25): 251907. doi:10.1063/1.2951600. Bibcode2008ApPhL..92y1907F. 
  8. S. Guenneau, T. M. Puvirajesinghe (2013). "Fick's second law transformed: one path to cloaking in mass diffusion". J. R. Soc. Interface 10 (83): 20130106. doi:10.1098/rsif.2013.0106. PMID 23536540. 
  9. Z. R. Zhang, J. P. Huang (2022). "Transformation plasma physics". Chin. Phys. Lett. 39 (7): 075201. doi:10.1088/0256-307X/39/7/075201. Bibcode2022ChPhL..39g5201Z. 
  10. F. B. Yang, J. P. Huang. Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials (to be published in 2024). Singapore: Springer. https://www.amazon.ca/Diffusionics-Diffusion-Process-Controlled-Metamaterials/dp/9819704863. 
  11. J. B. Pendry, D. Schurig, D. R. Smith (2006). "Controlling electromagnetic fields". Science 312 (5781): 1780–1782. doi:10.1126/science.1125907. PMID 16728597. Bibcode2006Sci...312.1780P. 
  12. 12.0 12.1 T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, C.-W. Qiu (2014). "Experimental demonstration of a bilayer thermal cloak". Phys. Rev. Lett. 112 (5): 054302. doi:10.1103/PhysRevLett.112.054302. PMID 24580600. Bibcode2014PhRvL.112e4302H. 
  13. 13.0 13.1 H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, B. L. Zhang (2014). "Ultrathin three-dimensional thermal cloak". Phys. Rev. Lett. 112 (5): 054301. doi:10.1103/PhysRevLett.112.054301. PMID 24580599. 
  14. J. C. Maxwell-Garnett (1904). "Colours in metal glasses and in metallic films". Philos. Trans. R. Soc. London Ser. A 203 (359–371): 385-420. doi:10.1098/rsta.1904.0024. Bibcode1904RSPTA.203..385G. 
  15. J. C. Maxwell-Garnett (1906). "VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II.". Philos. Trans. R. Soc. London Ser. A 205 (387–401): 237-288. doi:10.1098/rsta.1906.0007. Bibcode1906RSPTA.205..237G. 
  16. D. A. G. Bruggeman (1935). "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen". Ann. Phys. 416 (7): 636-664. doi:10.1002/andp.19354160705. Bibcode1935AnP...416..636B. 
  17. X. Y. Shen, Y. Li, C. R. Jiang, J. P. Huang (2016). "Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change". Phys. Rev. Lett. 117 (5): 055501. doi:10.1103/PhysRevLett.117.055501. PMID 27517778. Bibcode2016PhRvL.117e5501S. 
  18. X. C. Zhou, X. Xu, J. P. Huang (2023). "Adaptive multi-temperature control for transport and storage containers enabled by phase change materials". Nat. Commun. 14 (1): 5449. doi:10.1038/s41467-023-40988-2. PMID 37673906. Bibcode2023NatCo..14.5449Z. 
  19. D. L. Logan (2012). A first course in the finite element method. Cengage Learning. 
  20. P. Jin, L. J. Xu, G. Q. Xu, J. X. Li, C.-W. Qiu, J. P. Huang (2023). "Deep learning-assisted active metamaterials with heat-enhanced thermal transport". Adv. Mater.: 2305791. doi:10.1002/adma.202305791. PMID 37869962. 
  21. W. Sha, M. Xiao, J. H. Zhang, X. C. Ren, Z. Zhu, Y. Zhang, G. Q. Xu, H. G. Li, X. L. Liu, X. Chen, L. Gao, C.-W. Qiu, R. Hu (2021). "Robustly printable freeform thermal metamaterials". Nat. Commun. 12 (1): 7228. doi:10.1038/s41467-021-27543-7. PMID 34893631. Bibcode2021NatCo..12.7228S. 
  22. P. Jin, S. Yang, L. J. Xu, G. L. Dai, J. P. Huang, X. P. Ouyang (2021). "Particle swarm optimization for realizing bilayer thermal sensors with bulk isotropic materials". Int. J. Heat Mass Tran. 172: 121177. doi:10.1016/j.ijheatmasstransfer.2021.121177. 
  23. P. Jin, J. R. Liu, L. J. Xu, J. Wang, X. P. Ouyang, J.-H. Jiang, J. P. Huang (2023). "Tunable liquid-solid hybrid thermal metamaterials with a topology transition". Proc. Natl. Acad. Sci. U.S.A. 120 (3): e2217068120. doi:10.1073/pnas.2217068120. PMID 36634140. Bibcode2023PNAS..12017068J. 
  24. M. Wegener (2013). "Metamaterials Beyond Optics". Science 342 (6161): 939–940. doi:10.1126/science.1246545. PMID 24264981. Bibcode2013Sci...342..939W. 
  25. Statistical Physics and Complex Systems Research Group (2023). "Thermal cloak: small concept, big applications". Physics 52: 605-611. 
  26. J. C. Kim, Z. Ren, A. Yuksel, E. M. Dede, P. R. Bandaru, D. Oh, J. Lee (2021). "Recent advances in thermal metamaterials and their future applications for electronics packaging". J. Electron. Packag. 143: 010801. doi:10.1115/1.4047414. 
  27. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin (2017). "Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling". Science 355 (6329): 1062–1066. doi:10.1126/science.aai7899. PMID 28183998. Bibcode2017Sci...355.1062Z.