Engineering:Rankine Lecture
From HandWiki
Short description: Annual lecture organised by the British Geotechnical Association
The Rankine lecture is an annual lecture organised by the British Geotechnical Association named after William John Macquorn Rankine, an early contributor to the theory of soil mechanics.
This should not be confused with the biennial BGA Géotechnique Lecture.
The Rankine Lecture is held in March each year. In even-numbered years, the lecturer is from the UK. In odd-numbered years, the lecturer is from outside the UK. Each lecture is usually published[1] in Géotechnique.[2]
List of Rankine Lecturers
No | YEAR | LECTURER | SUBJECT | Géotechnique | AFFILIATION |
---|---|---|---|---|---|
1 | 1961 | A. Casagrande | Control of seepage through foundations and abutments of dams[3] | 11(3) 161-181 | Harvard University |
2 | 1962 | L. F. Cooling | Field measurements in soil mechanics[4] | 12(2) 77-103 | Building Research Establishment |
3 | 1963 | A. Mayer | Recent work in rock mechanics[5] | 13(2) 99-118 | |
4 | 1964 | A. W. Skempton | Long-term stability of clay slopes[6] | 14(2) 77-101 | Imperial College |
5 | 1965 | N. M. Newmark | Effects of earthquakes on dams and embankments[7] | 15(2) 139-159 | University of Illinois at Urbana-Champaign |
6 | 1966 | A. W. Bishop | The strength of soils as engineering materials[8] | 16(2) 91-128 | Imperial College |
7 | 1967 | L. Bjerrum | Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[9] | 17(2) 83-117 | Norwegian Geotechnical Institute |
8 | 1968 | R. Glossop | The rise of geotechnology and its influence on engineering practice[10] | 18(2) 107-150 | John Mowlem and Co., Ltd |
9 | 1969 | R. B. Peck | Advantages and limitations of the observational method in applied soil mechanics[11] | 19(2) 171-187 | University of Illinois |
10 | 1970 | K. H. Roscoe | The influence of strains in soil mechanics[12] | 20(2) 129-170 | University of Cambridge |
11 | 1971 | J. C. Jaeger | Friction of rocks and stability of rock slopes[13] | 21(2) 97-134 | Australian National University, Canberra |
12 | 1972 | P. W. Rowe | The relevance of soil fabric to site investigation practice[14] | 22(2) 195-300 | University of Manchester |
13 | 1973 | T. W. Lambe | Predictions in soil engineering[15] | 23(2) 151-201 | Massachusetts Institute of Technology |
14 | 1974 | R. E. Gibson | The analytical method in soil mechanics[16] | 24(2) 115-139 | King's College, London |
15 | 1975 | J. Kérisel | Old structures in relation to soil conditions[17] | 25(3) 433-482 | Simecsol Études |
16 | 1976 | A. C. Meigh | The Triassic rocks, with particular reference to predicted and observed performance of some major foundations[18] | 26(3) 393-451 | Soil Mechanics Limited |
17 | 1977 | V. F. B. de Mello | Reflections on design decisions of practical significance to embankment dams[19] | 27(3) 281-354 | Private Consultant, Brazil |
18 | 1978 | W. H. Ward | Ground supports for tunnels in weak rocks[20] | 28(2) 135-170 | Building Research Establishment |
19 | 1979 | H. Bolton Seed | Considerations in the earthquake-resistant design of earth and rockfill dams[21] | 29(3) 215-262 | University of California, Berkeley |
20 | 1980 | A. N. Schofield | Cambridge geotechnical centrifuge operations[22] | 30(3) 227-267 | University of Cambridge |
21 | 1981 | N. R. Morgenstern | Geotechnical engineering and frontier resource development[23] | 31(3) 305-365 | University of Alberta |
22 | 1982 | D. J. Henkel | Geology, geomorphology and geotechnics[24] | 32(3) 175-194 | Ove Arup & Partners |
23 | 1983 | E. Hoek | Strength of jointed rock masses[25] | 33(3) 187-222 | Golder Associates, Vancouver |
24 | 1984 | C. P. Wroth | The interpretation of in situ soil tests[26] | 34(4) 449-488 | University of Oxford |
25 | 1985 | N. Janbu | Soil models in offshore engineering[27] | 35(3) 241-280 | Norwegian Institute of Technology |
26 | 1986 | A. D. M. Penman | On the embankment dam[28] | 36(3) 303-347 | Geotechnical Engineering Consultant, Harpenden |
27 | 1987 | R. F. Scott | Failure[29] | 37(4) 423-466 | California Institute of Technology |
28 | 1988 | H. B. Sutherland | Uplift resistance in soils[30] | 38(4) 493-515 | University of Glasgow Trust |
29 | 1989 | H. G. Poulos | Pile behaviour - theory and application[31] | 39(3) 365-415 | University of Sydney |
30 | 1990 | J. B. Burland | On the compressibility and shear strength of natural clays[32] | 40(3) 329-378 | Imperial College |
31 | 1991 | J. K. Mitchell | Conduction phenomena: from theory to geotechnical practice[33] | 41(3) 299-339 | University of California, Berkeley |
32 | 1992 | B. Simpson | Retaining structures: displacement and design[34] | 42(4) 541-576 | Ove Arup & Partners |
33 | 1993 | K. Ishihara | Liquefaction and flow failure during earthquakes[35] | 43(3) 351-414 | University of Tokyo |
34 | 1994 | P. R. Vaughan | Assumption, prediction and reality in geotechnical engineering[36] | 44(4) 573-608 | Imperial College |
35 | 1995 | R. E. Goodman | Block theory and its application[37] | 45(3) 383-422 | University of California, Berkeley |
36 | 1996 | S. F. Brown | Soil mechanics in pavement engineering[38] | 46(3) 383-425 | University of Nottingham |
37 | 1997 | G. E. Blight | Interactions between the atmosphere and the Earth[39] | 47(4) 715-766 | University of Witwatersrand |
38 | 1998 | D. W. Hight | Soil characterisation: the importance of structure and anisotropy | - | Imperial College |
39 | 1999 | S. Leroueil | Natural slopes and cuts: movement and failure mechanisms[40][41] | 51(3) 197-243 | Université Laval, Ste-Foy, Québec |
40 | 2000 | J. H. Atkinson | Non-linear soil stiffness in routine design[42][43] | 50(5) 487-507 | City University, London |
41 | 2001 | H. Brandl | Energy foundations and other thermo-active ground structures[44][45] | 56(2) 81-122 | Vienna University of Technology, Austria |
42 | 2002 | D. M. Potts | Numerical analysis: a virtual dream or practical reality?[46][47] | 53(6) 535-572 | Imperial College |
43 | 2003 | M. F. Randolph | Science and empiricism in pile foundation design[48][49] | 53(10) 847-874 | University of Western Australia |
44 | 2004 | N. N. Ambraseys | Engineering, seismology and soil mechanics | - | Imperial College |
45 | 2005 | R. K. Rowe | Long term performance of contaminant barrier systems[50][51] | 55(9) 631-678 | Queen's University at Kingston, Ontario, Canada |
46 | 2006 | R. J. Mair | 58(9) 695-736 | University of Cambridge | |
47 | 2007 | A. Gens | Soil-environment interactions in geotechnical engineering[52][53] | 60(1) 3-74 | Universitat Politècnica de Catalunya |
48 | 2008 | J. A. Charles | The engineering behaviour of fill - the use, misuse and disuse of case histories[54][55] | 58(7) 541-570 | Building Research Establishment |
49 | 2009 | T. D. O'Rourke | Geohazards & Large Geographically Distributed Systems[56][57] | 60(7) 505-543 | Cornell University |
50 | 2010 | C. R. I. Clayton | Stiffness at small strain - research and practice[58][59] | 61(1) 5-37 | University of Southampton |
51 | 2011 | S. W. Sloan | Geotechnical Stability Analysis[60][61] | 63(7) 531-571 | University of Newcastle, Australia |
52 | 2012 | M. D. Bolton | Performance-based design in geotechnical engineering | University of Cambridge | |
53 | 2013 | M. Jamiolkowski | Soil Mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility[62] | 64(8) 590-619 | Politecnico di Torino |
54 | 2014 | G. T. Houlsby | Interactions in Offshore Foundation Design[63][64][65] | 66(10) 791-825 | University of Oxford |
55 | 2015 | S. Lacasse | Hazard, Risk and Reliability in Geotechnical Practice[66] | Norwegian Geotechnical Institute | |
56 | 2016 | R. Jardine | Geotechnics and Energy[67][68] | 70(1) 3-59 | Imperial College |
57 | 2017 | E. Alonso | Triggering and Motion of Landslides | 71(1) 3-59 | Universitat Politècnica de Catalunya |
58 | 2018 | N. O'Riordan | Dynamic soil-structure interaction[69] | ARUP | |
59 | 2019 | G. Gazetas | Benefits of Unconventional Seismic Foundation Design[70][71] | National Technical University of Athens | |
60 | 2022 (2020) | S. Jefferis | The Unusual and the Unexpected in Geotechnical Engineering [72][73] | Environmental Geotechnics Limited | |
61 | 2023 | John P. Carter[74][75] | Constitutive Modelling in Computational Geomechanics [76] | University of Newcastle, Australia | |
62 | 2024 | Lidija Zdravković[77] [78] | Imperial College London | ||
63 | 2025 |
See also
- Named lectures
- Géotechnique Lecture
External links
- ICE Virtual Library - The Rankine Lecture
- British Geotechnical Association - List of Rankine Lecturers
- British Geotechnical Association
References
- ↑ Géotechnique Rankine-lecture papers
- ↑ Géotechnique
- ↑ Casagrande, A. (1961). "Control of Seepage through Foundations and Abutments of Dams*". Géotechnique 11 (3): 161–182. doi:10.1680/geot.1961.11.3.161.
- ↑ Cooling, L. F. (1962). "Field Measurements in Soil Mechanics". Géotechnique 12 (2): 77–104. doi:10.1680/geot.1962.12.2.77.
- ↑ Mayer, A. (1963). "Recent Work in Rock Mechanics". Géotechnique 13 (2): 99–120. doi:10.1680/geot.1963.13.2.99.
- ↑ Skempton, A. W. (1964). "Long-term stability of clay slopes". Géotechnique 14 (2): 77–102. doi:10.1680/geot.1964.14.2.77.
- ↑ Newmark, N. M. (1965). "Effects of Earthquakes on Dams and Embankments". Géotechnique 15 (2): 139–160. doi:10.1680/geot.1965.15.2.139.
- ↑ Bishop, A. W. (1966). "The Strength of Soils as Engineering Materials". Géotechnique 16 (2): 91–130. doi:10.1680/geot.1966.16.2.91.
- ↑ Bjerrum, L. (1967). "Engineering Geology of Norwegian Normally-Consolidated Marine Clays as Related to Settlements of Buildings". Géotechnique 17 (2): 83–118. doi:10.1680/geot.1967.17.2.83.
- ↑ Glossop, R. (1968). "The Rise of Geotechnology and its Influence on Engineering Practice". Géotechnique 18 (2): 107–150. doi:10.1680/geot.1968.18.2.107.
- ↑ Peck, R. B. (1969). "Advantages and Limitations of the Observational Method in Applied Soil Mechanics". Géotechnique 19 (2): 171–187. doi:10.1680/geot.1969.19.2.171.
- ↑ Roscoe, K. H. (1970). "The Influence of Strains in Soil Mechanics". Géotechnique 20 (2): 129–170. doi:10.1680/geot.1970.20.2.129.
- ↑ Jaeger, J. C. (1971). "Friction of Rocks and Stability of Rock Slopes". Géotechnique 21 (2): 97–134. doi:10.1680/geot.1971.21.2.97.
- ↑ Rowe, P. W. (1972). "The relevance of soil fabric to site investigation practice". Géotechnique 22 (2): 195–300. doi:10.1680/geot.1972.22.2.195.
- ↑ Lambe, T. W. (1973). "Predictions in soil engineering". Géotechnique 23 (2): 151–202. doi:10.1680/geot.1973.23.2.151.
- ↑ Gibson, R. E. (1974). "The analytical method in soil mechanics". Géotechnique 24 (2): 115–140. doi:10.1680/geot.1974.24.2.115.
- ↑ Kérisel, J. (1975). "Old structures in relation to soil conditions". Géotechnique 25 (3): 433–483. doi:10.1680/geot.1975.25.3.433.
- ↑ Meigh, A. C. (1976). "The Triassic rocks, with particular reference to predicted and observed performance of some major foundations". Géotechnique 26 (3): 393–452. doi:10.1680/geot.1976.26.3.393.
- ↑ de Mello, V. F. B. (1977). "Reflections on design decisions of practical significance to embankment dams". Géotechnique 27 (3): 281–355. doi:10.1680/geot.1977.27.3.281.
- ↑ Ward, W. H. (1978). "Ground supports for tunnels in weak rocks". Géotechnique 28 (2): 135–136. doi:10.1680/geot.1978.28.2.135.
- ↑ Bolton Seed, H. (1979). "Considerations in the earthquake-resistant design of earth and rockfill dams". Géotechnique 29 (3): 215–263. doi:10.1680/geot.1979.29.3.215.
- ↑ Schofield, A. N. (1980). "Cambridge Geotechnical Centrifuge Operations". Géotechnique 30 (3): 227–268. doi:10.1680/geot.1980.30.3.227.
- ↑ Morgenstern, N. R. (1981). "Geotechnical engineering and frontier resource development". Géotechnique 31 (3): 305–365. doi:10.1680/geot.1981.31.3.305.
- ↑ Henkel, D.J. (1982). "Geology, geomorphology and geotechnics". Géotechnique 32 (3): 175–194. doi:10.1680/geot.1982.32.3.175.
- ↑ Hoek, E. (1984). "Strength of jointed rock masses". Géotechnique 34 (3): 187–223. doi:10.1680/geot.1983.33.3.187.
- ↑ Wroth, C.P. (1984). "The interpretation of in situ soil tests". Géotechnique 34 (4): 449–489. doi:10.1680/geot.1984.34.4.449.
- ↑ Janbu, N. (1985). "Soil models in offshore engineering". Géotechnique 35 (3): 241–281. doi:10.1680/geot.1985.35.3.241.
- ↑ Penman, A.D.M. (1986). "On the embankment dam". Géotechnique 36 (3): 303–348. doi:10.1680/geot.1986.36.3.303.
- ↑ Scott, R.F. (1987). "Failure". Géotechnique 37 (4): 423–466. doi:10.1680/geot.1987.37.4.423.
- ↑ Sutherland, H.B. (1988). "Uplift resistance in soils". Géotechnique 38 (4): 493–516. doi:10.1680/geot.1988.38.4.493.
- ↑ Poulos, H. G. (1989). "Pile behaviour—theory and application". Géotechnique 39 (3): 365–415. doi:10.1680/geot.1989.39.3.365.
- ↑ Burland, J. B. (1990). "On the compressibility and shear strength of natural clays". Géotechnique 40 (3): 329–378. doi:10.1680/geot.1990.40.3.329.
- ↑ Mitchell, J. K. (1991). "Conduction phenomena: from theory to geotechnical practice". Géotechnique 41 (3): 299–340. doi:10.1680/geot.1991.41.3.299.
- ↑ Simpson, B. (1992). "Retaining structures: Displacement and design". Géotechnique 42 (4): 541–576. doi:10.1680/geot.1992.42.4.541.
- ↑ Ishihara, K. (1993). "Liquefaction and flow failure during earthquakes". Géotechnique 43 (3): 351–451. doi:10.1680/geot.1993.43.3.351.
- ↑ Vaughan, P.R. (1994). "Assumption, prediction and reality in geotechnical engineering". Géotechnique 54 (5): 573–609. doi:10.1680/geot.1994.44.4.573.
- ↑ Goodman, R. E. (1995). "Block theory and its application". Géotechnique 45 (3): 383–423. doi:10.1680/geot.1995.45.3.383.
- ↑ Brown, S. F. (1996). "The Rankine Lecture". Géotechnique 46 (3): 381–382. doi:10.1680/geot.1996.46.3.381.
- ↑ Blight, G. E. (1997). "The Rankine Lecture". Géotechnique 47 (4): 713–767. doi:10.1680/geot.1997.47.4.713.
- ↑ "Introduction for the 39th Rankine Lecture". Géotechnique 51 (3): 195. 2001. doi:10.1680/geot.2001.51.3.195.
- ↑ Leroueil, S. (2001). "Natural slopes and cuts: Movement and failure mechanisms". Géotechnique 51 (3): 197–243. doi:10.1680/geot.2001.51.3.197.
- ↑ "Introduction for the 40th Rankine Lecture". Géotechnique 50 (5): 485–486. 2000. doi:10.1680/geot.2000.50.5.485.
- ↑ Atkinson, J. H. (2000). "Non-linear soil stiffness in routine design". Géotechnique 50 (5): 487–508. doi:10.1680/geot.2000.50.5.487.
- ↑ "Introduction for 41st Rankine Lecture 21 March 2001". Géotechnique 56 (2): 79. 2006. doi:10.1680/geot.2006.56.2.79.
- ↑ Brandl, H. (2006). "Energy foundations and other thermo-active ground structures". Géotechnique 56 (2): 81–122. doi:10.1680/geot.2006.56.2.81.
- ↑ "Introduction for the 42nd Rankine Lecture". Géotechnique 53 (6): 533–534. 2003. doi:10.1680/geot.2003.53.6.533.
- ↑ Potts, D. M. (2003). "Numerical analysis: A virtual dream or practical reality?". Géotechnique 53 (6): 535–573. doi:10.1680/geot.2003.53.6.535.
- ↑ "Introduction for 43rd Rankine Lecture 19 March 2003". Géotechnique 53 (10): 845–846. 2003. doi:10.1680/geot.2003.53.10.845.
- ↑ Randolph, M. F. (2003). "Science and empiricism in pile foundation design". Géotechnique 53 (10): 847–875. doi:10.1680/geot.2003.53.10.847.
- ↑ "Introduction for 45th Rankine Lecture 23 March 2005". Géotechnique 55 (9): 629–630. 2005. doi:10.1680/geot.2005.55.9.629.
- ↑ Rowe, R. K. (2005). "Long term performance of contaminant barrier systems". Géotechnique 55 (9): 631–678. doi:10.1680/geot.2005.55.9.631.
- ↑ "Introduction for 47th Rankine Lecture 21 March 2007". Géotechnique 60 (1): 1. 2010. doi:10.1680/geot.9.B.011.
- ↑ Gens, A. (2010). "Soil-environment interactions in geotechnical engineering". Géotechnique 60 (1): 3–74. doi:10.1680/geot.9.P.109. https://www.scipedia.com/public/Gens_2010a.
- ↑ "Introduction for 48th Rankine Lecture 19 March 2008". Géotechnique 58 (7): 539. 2008. doi:10.1680/geot.2008.58.7.539.
- ↑ Charles, J. A. (2008). "The engineering behaviour of fill - the use, misuse and disuse of case histories". Géotechnique 58 (7): 541. doi:10.1680/geot.2008.58.7.541.
- ↑ O'Rourke, Tom (2010). "Introduction for the 49th Rankine Lecture 18th March 2009". Géotechnique 60 (7): 503–504. doi:10.1680/geot.2010.60.7.503.
- ↑ O'Rourke, T. D. (2010). "Geohazards and large, geographically distributed systems". Géotechnique 60 (7): 505–543. doi:10.1680/geot.2010.60.7.505.
- ↑ "Introduction for the 50th Rankine Lecture 17 March 2010". Géotechnique 61 (1): 3–4. 2011. doi:10.1680/geot.2011.61.1.3.
- ↑ Clayton, C. R. I. (2011). "Stiffness at small strain - research and practice". Géotechnique 61 (1): 5–37. doi:10.1680/geot.2011.61.1.5.
- ↑ "Introduction for the 51st Rankine Lecture". Géotechnique 63 (7): 530. 2011. doi:10.1680/geot.12.RL.002.
- ↑ Sloan, S. W. (2013). "Geotechnical stability analysis". Géotechnique 63 (7): 531–571. doi:10.1680/geot.12.RL.001.
- ↑ Jamiolkowski, M. (2014). "Soil Mechanics and the observational method: Challenges at the Zelazny Most copper tailings disposal facility". Géotechnique 64 (8): 590–618. doi:10.1680/geot.14.RL.002.
- ↑ "Introduction for the 54th Rankine Lecture". Géotechnique 66 (10): 789–790. 2016. doi:10.1680/jgeot.15.rl.002.
- ↑ Houlsby, G. T. (2016). "Interactions in Offshore Foundation Design". Géotechnique 66 (10): 791–825. doi:10.1680/jgeot.15.rl.001. https://ora.ox.ac.uk/objects/uuid:60017c3f-d108-4a91-981e-01c87d3499f4.
- ↑ BGA 54th Rankine Lecture
- ↑ BGA 55th Rankine Lecture
- ↑ Jardine, Richard J. (2020). "Geotechnics, energy and climate change: The 56th Rankine Lecture". Géotechnique 70: 3–59. doi:10.1680/jgeot.18.RL.001.
- ↑ Hight, David W. (2020). "Introduction for the 56th Rankine Lecture". Géotechnique 70: 1–2. doi:10.1680/jgeot.18.RL.002.
- ↑ The 58th Rankine Lecture
- ↑ BGA 59th Rankine Lecture
- ↑ BGA 59th Rankine Lecture Flyer
- ↑ 60th Rankine Lecture
- ↑ Rearranged date for the 60th Rankine Lecture
- ↑ Professor John Carter announced as 61st Rankine Lecturer
- ↑ John Carter to deliver 61st Rankine Lecture on soil constitutive modelling
- ↑ The 61st Rankine Lecture : Constitutive Modelling in Computational Geomechanics by Professor John Carter of the University of Newcastle, Australia
- ↑ Professor Lidija Zdravković
- ↑ Professor Lidija Zdravković announced 62nd Rankine Lecturer
Original source: https://en.wikipedia.org/wiki/Rankine Lecture.
Read more |