Entanglement depth

From HandWiki

In quantum physics, entanglement depth characterizes the strength of multiparticle entanglement. An entanglement depth [math]\displaystyle{ k }[/math] means that the quantum state of a particle ensemble cannot be described under the assumption that particles interacted with each other only in groups having fewer than [math]\displaystyle{ k }[/math] particles. It has been used to characterize the quantum states created in experiments with cold gases.[1]

Definition

Entanglement depth appeared first in the context of cold gases, together with entanglement criteria that made it possible to bound it from below based on measured quantities.[2][3][4][5][6][7][8]

We will now present a general definition based on convex sets of quantum states. First, we will define [math]\displaystyle{ k }[/math]-producibility.[9] Let us consider a pure state that is the tensor product of multi-particle quantum states

[math]\displaystyle{ |\Psi\rangle=|\phi_1\rangle\otimes|\phi_2\rangle\otimes ... \otimes|\phi_n\rangle. }[/math]

The pure state [math]\displaystyle{ |\Psi\rangle }[/math] is said to be [math]\displaystyle{ k }[/math]-producible if all [math]\displaystyle{ \phi_i }[/math] are states of at most [math]\displaystyle{ k }[/math] particles. A mixed state is called [math]\displaystyle{ k }[/math]-producible, if it is a mixture of pure states that are all at most [math]\displaystyle{ k }[/math]-producible. The [math]\displaystyle{ k }[/math]-producible mixed states form a convex set.

A quantum state contains at least genuine multiparticle entanglement of [math]\displaystyle{ k+1 }[/math] particles, if it is not [math]\displaystyle{ k }[/math]-producible.

Finally, a quantum state has an entanglement depth [math]\displaystyle{ k }[/math], if it is [math]\displaystyle{ k }[/math]-producible, but not [math]\displaystyle{ (k-1) }[/math]-producible.

References

  1. Gross, C.; Zibold, T.; Nicklas, E.; Estève, J.; Oberthaler, M. K. (April 2010). "Nonlinear atom interferometer surpasses classical precision limit". Nature 464 (7292): 1165–1169. doi:10.1038/nature08919. PMID 20357767. Bibcode2010Natur.464.1165G. 
  2. Sørensen, Anders S.; Mølmer, Klaus (14 May 2001). "Entanglement and Extreme Spin Squeezing". Physical Review Letters 86 (20): 4431–4434. doi:10.1103/PhysRevLett.86.4431. PMID 11384252. Bibcode2001PhRvL..86.4431S. 
  3. Riedel, Max F.; Böhi, Pascal; Li, Yun; Hänsch, Theodor W.; Sinatra, Alice; Treutlein, Philipp (April 2010). "Atom-chip-based generation of entanglement for quantum metrology". Nature 464 (7292): 1170–1173. doi:10.1038/nature08988. PMID 20357765. Bibcode2010Natur.464.1170R. 
  4. Bohnet, J. G.; Cox, K. C.; Norcia, M. A.; Weiner, J. M.; Chen, Z.; Thompson, J. K. (September 2014). "Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit". Nature Photonics 8 (9): 731–736. doi:10.1038/nphoton.2014.151. Bibcode2014NaPho...8..731B. 
  5. Cox, Kevin C.; Greve, Graham P.; Weiner, Joshua M.; Thompson, James K. (4 March 2016). "Deterministic Squeezed States with Collective Measurements and Feedback". Physical Review Letters 116 (9): 093602. doi:10.1103/PhysRevLett.116.093602. PMID 26991175. Bibcode2016PhRvL.116i3602C. 
  6. Mitchell, Morgan W; Beduini, Federica A (17 July 2014). "Extreme spin squeezing for photons". New Journal of Physics 16 (7): 073027. doi:10.1088/1367-2630/16/7/073027. Bibcode2014NJPh...16g3027M. 
  7. Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten (17 April 2014). "Detecting Multiparticle Entanglement of Dicke States". Physical Review Letters 112 (15): 155304. doi:10.1103/PhysRevLett.112.155304. PMID 24785048. Bibcode2014PhRvL.112o5304L. 
  8. Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Luo, Xin-Yu; Guo, Shuai-Feng; Cao, Jia-Hao; Tey, Meng Khoon; You, Li (19 June 2018). "Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms". Proceedings of the National Academy of Sciences 115 (25): 6381–6385. doi:10.1073/pnas.1715105115. PMID 29858344. Bibcode2018PNAS..115.6381Z. 
  9. Gühne, Otfried; Tóth, Géza; Briegel, Hans J (4 November 2005). "Multipartite entanglement in spin chains". New Journal of Physics 7: 229. doi:10.1088/1367-2630/7/1/229.