Erdős space

From HandWiki
Short description: Totally disconnected topological space

In mathematics, Erdős space is a topological space named after Paul Erdős, who described it in 1940.[1] Erdős space is defined as a subspace [math]\displaystyle{ E\subset\ell^2 }[/math] of the Hilbert space of square summable sequences, consisting of the sequences whose elements are all rational numbers.

Erdős space is a totally disconnected, one-dimensional topological space. The space [math]\displaystyle{ E }[/math] is homeomorphic to [math]\displaystyle{ E\times E }[/math] in the product topology. If the set of all homeomorphisms of the Euclidean space [math]\displaystyle{ \mathbb{R}^n }[/math] (for [math]\displaystyle{ n\ge 2 }[/math]) that leave invariant the set [math]\displaystyle{ \mathbb{Q}^n }[/math] of rational vectors is endowed with the compact-open topology, it becomes homeomorphic to the Erdős space.[2]

Erdős space also surfaces in complex dynamics via iteration of the function [math]\displaystyle{ f(z)=e^z-1 }[/math]. Let [math]\displaystyle{ f^n }[/math] denote the [math]\displaystyle{ n }[/math]-fold composition of [math]\displaystyle{ f }[/math]. The set of all points [math]\displaystyle{ z\in \mathbb C }[/math] such that [math]\displaystyle{ \text{Im}(f^n(z))\to\infty }[/math] is a collection of pairwise disjoint rays (homeomorphic copies of [math]\displaystyle{ [0,\infty) }[/math]), each joining an endpoint in [math]\displaystyle{ \mathbb C }[/math] to the point at infinity. The set of finite endpoints is homeomorphic to Erdős space [math]\displaystyle{ E }[/math].[3]

See also

References

  1. Erdős, Paul (1940), "The dimension of the rational points in Hilbert space", Annals of Mathematics, Second Series 41 (4): 734–736, doi:10.2307/1968851, https://www.renyi.hu/~p_erdos/1940-11.pdf 
  2. Dijkstra, Jan J.; van Mill, Jan (2010), "Erdős space and homeomorphism groups of manifolds", Memoirs of the American Mathematical Society 208 (979), doi:10.1090/S0065-9266-10-00579-X, ISBN 978-0-8218-4635-3, https://research.vu.nl/ws/files/2702833/2010memoirs.pdf 
  3. Lipham, David S. (2020-05-09). "Erdős space in Julia sets". arXiv:2004.12976 [math.DS].