Favard operator

From HandWiki
Short description: Functional analysis operator

In functional analysis, a branch of mathematics, the Favard operators are defined by:

[n(f)](x)=1nπk=exp(n(knx)2)f(kn)

where x, n. They are named after Jean Favard.

Generalizations

A common generalization is:

[n(f)](x)=1nγn2πk=exp(12γn2(knx)2)f(kn)

where (γn)n=1 is a positive sequence that converges to 0.[1] This reduces to the classical Favard operators when γn2=1/(2n).

References

  • Favard, Jean (1944). "Sur les multiplicateurs d'interpolation" (in fr). Journal de Mathématiques Pures et Appliquées 23 (9): 219–247.  This paper also discussed Szász–Mirakyan operators, which is why Favard is sometimes credited with their development (e.g. Favard–Szász operators).[1]

Footnotes

  1. Nowak, Grzegorz; Aneta Sikorska-Nowak (14 November 2007). "On the generalized Favard–Kantorovich and Favard–Durrmeyer operators in exponential function spaces". Journal of Inequalities and Applications 2007: 075142. doi:10.1155/2007/75142. https://eudml.org/doc/128662.