Finance:Smith–Wilson method

From HandWiki

The Smith–Wilson method is a method for extrapolating forward rates. It is recommended by EIOPA to extrapolate interest rates. It was introduced in 2000 by A. Smith and T. Wilson for Bacon & Woodrow.

Mathematical formulation

Let UFR be some ultimate forward rate and [math]\displaystyle{ u_i }[/math] be the time to the i'th maturity. Then [math]\displaystyle{ P(t) }[/math] defines the price of a zero-coupon bond at time t.

[math]\displaystyle{ P(t) = e^{-UFR\cdot t} + \sum_{j=1}^N \xi_j \cdot W(t, u_j) }[/math]

Where [math]\displaystyle{ W(t, u_j) = e^{-UFR\cdot (t+u_j)} \cdot (\alpha\cdot \min(t, u_j) - 0.5e^{-\alpha\cdot \max(t, u_j)}\cdot (e^{\alpha\cdot \min(t, u_j)} - e^{-\alpha\cdot \min(t, u_j)})) }[/math]

and the symmetric W matrix is [math]\displaystyle{ W = (W(u_i, u_j))_{i=1,...,N:j=1,...,N} }[/math]

and [math]\displaystyle{ p = (P(u_1), ..., P(u_N))^T }[/math], [math]\displaystyle{ \mu = (e^{-UFR\cdot u_1}, ..., e^{-UFR\cdot u_N})^T }[/math], [math]\displaystyle{ \xi = W^{-1}(p-\mu) }[/math].

References