Frequent pattern discovery

From HandWiki
Short description: Technique for database mining

Frequent pattern discovery (or FP discovery, FP mining, or Frequent itemset mining) is part of knowledge discovery in databases, Massive Online Analysis, and data mining; it describes the task of finding the most frequent and relevant patterns in large datasets.[1][2] The concept was first introduced for mining transaction databases.[3] Frequent patterns are defined as subsets (itemsets, subsequences, or substructures) that appear in a data set with frequency no less than a user-specified or auto-determined threshold.[2][4]

Techniques

Techniques for FP mining include:

For the most part, FP discovery can be done using association rule learning with particular algorithms Eclat, FP-growth and the Apriori algorithm.

Other strategies include:

and respective specific techniques.

Implementations exist for various machine learning systems or modules like MLlib for Apache Spark.[5]

References