Gegenbauer polynomials

From HandWiki
Short description: Polynomial sequence

In mathematics, Gegenbauer polynomials or ultraspherical polynomials C(α)n(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.

Characterizations

A variety of characterizations of the Gegenbauer polynomials are available.

[math]\displaystyle{ \frac{1}{(1-2xt+t^2)^\alpha}=\sum_{n=0}^\infty C_n^{(\alpha)}(x) t^n \qquad (0 \leq |x| \lt 1, |t| \leq 1, \alpha \gt 0) }[/math]
[math]\displaystyle{ \begin{align} C_0^{(\alpha)}(x) & = 1 \\ C_1^{(\alpha)}(x) & = 2 \alpha x \\ (n+1) C_{n+1}^{(\alpha)}(x) & = 2(n+\alpha) x C_{n}^{(\alpha)}(x) - (n+2\alpha-1)C_{n-1}^{(\alpha)}(x). \end{align} }[/math]
  • Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation (Suetin 2001):
[math]\displaystyle{ (1-x^{2})y''-(2\alpha+1)xy'+n(n+2\alpha)y=0.\, }[/math]
When α = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials.
When α = 1, the equation reduces to the Chebyshev differential equation, and the Gegenbauer polynomials reduce to the Chebyshev polynomials of the second kind.[1]
  • They are given as Gaussian hypergeometric series in certain cases where the series is in fact finite:
[math]\displaystyle{ C_n^{(\alpha)}(z)=\frac{(2\alpha)_n}{n!} \,_2F_1\left(-n,2\alpha+n;\alpha+\frac{1}{2};\frac{1-z}{2}\right). }[/math]
(Abramowitz & Stegun p. 561). Here (2α)n is the rising factorial. Explicitly,
[math]\displaystyle{ C_n^{(\alpha)}(z)=\sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k\frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)k!(n-2k)!}(2z)^{n-2k}. }[/math]
From this it is also easy to obtain the value at unit argument:
[math]\displaystyle{ C_n^{(\alpha)}(1)=\frac{\Gamma(2\alpha+n)}{\Gamma(2\alpha)n!}. }[/math]
[math]\displaystyle{ C_n^{(\alpha)}(x) = \frac{(2\alpha)_n}{(\alpha+\frac{1}{2})_{n}}P_n^{(\alpha-1/2,\alpha-1/2)}(x). }[/math]
in which [math]\displaystyle{ (\theta)_n }[/math] represents the rising factorial of [math]\displaystyle{ \theta }[/math].
One therefore also has the Rodrigues formula
[math]\displaystyle{ C_n^{(\alpha)}(x) = \frac{(-1)^n}{2^n n!}\frac{\Gamma(\alpha+\frac{1}{2})\Gamma(n+2\alpha)}{\Gamma(2\alpha)\Gamma(\alpha+n+\frac{1}{2})}(1-x^2)^{-\alpha+1/2}\frac{d^n}{dx^n}\left[(1-x^2)^{n+\alpha-1/2}\right]. }[/math]

Orthogonality and normalization

For a fixed α > -1/2, the polynomials are orthogonal on [−1, 1] with respect to the weighting function (Abramowitz & Stegun p. 774)

[math]\displaystyle{ w(z) = \left(1-z^2\right)^{\alpha-\frac{1}{2}}. }[/math]

To wit, for n ≠ m,

[math]\displaystyle{ \int_{-1}^1 C_n^{(\alpha)}(x)C_m^{(\alpha)}(x)(1-x^2)^{\alpha-\frac{1}{2}}\,dx = 0. }[/math]

They are normalized by

[math]\displaystyle{ \int_{-1}^1 \left[C_n^{(\alpha)}(x)\right]^2(1-x^2)^{\alpha-\frac{1}{2}}\,dx = \frac{\pi 2^{1-2\alpha}\Gamma(n+2\alpha)}{n!(n+\alpha)[\Gamma(\alpha)]^2}. }[/math]

Applications

The Gegenbauer polynomials appear naturally as extensions of Legendre polynomials in the context of potential theory and harmonic analysis. The Newtonian potential in Rn has the expansion, valid with α = (n − 2)/2,

[math]\displaystyle{ \frac{1}{|\mathbf{x}-\mathbf{y}|^{n-2}} = \sum_{k=0}^\infty \frac{|\mathbf{x}|^k}{|\mathbf{y}|^{k+n-2}}C_k^{(\alpha)}(\frac{\mathbf{x}\cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}). }[/math]

When n = 3, this gives the Legendre polynomial expansion of the gravitational potential. Similar expressions are available for the expansion of the Poisson kernel in a ball (Stein Weiss).

It follows that the quantities [math]\displaystyle{ C^{((n-2)/2)}_k(\mathbf{x}\cdot\mathbf{y}) }[/math] are spherical harmonics, when regarded as a function of x only. They are, in fact, exactly the zonal spherical harmonics, up to a normalizing constant.

Gegenbauer polynomials also appear in the theory of Positive-definite functions.

The Askey–Gasper inequality reads

[math]\displaystyle{ \sum_{j=0}^n\frac{C_j^\alpha(x)}{{2\alpha+j-1\choose j}}\ge 0\qquad (x\ge-1,\, \alpha\ge 1/4). }[/math]

In spectral methods for solving differential equations, if a function is expanded in the basis of Chebyshev polynomials and its derivative is represented in a Gegenbauer/ultraspherical basis, then the derivative operator becomes a diagonal matrix, leading to fast banded matrix methods for large problems.[2]

See also

References

Specific
  1. Arfken, Weber, and Harris (2013) "Mathematical Methods for Physicists", 7th edition; ch. 18.4
  2. Olver, Sheehan; Townsend, Alex (January 2013). "A Fast and Well-Conditioned Spectral Method". SIAM Review 55 (3): 462–489. doi:10.1137/120865458. ISSN 0036-1445.