Generalized Korteweg–De Vries equation
From HandWiki
In mathematics, a generalized Korteweg–De Vries equation (Masayoshi Tsutsumi, Toshio Mukasa & Riichi Iino 1970) is the nonlinear partial differential equation
- [math]\displaystyle{ \partial_t u + \partial_x^3 u + \partial_x f(u) = 0.\, }[/math]
The function f is sometimes taken to be f(u) = uk+1/(k+1) + u for some positive integer k (where the extra u is a "drift term" that makes the analysis a little easier). The case f(u) = 3u2 is the original Korteweg–De Vries equation.
References
- Tsutsumi, Masayoshi; Mukasa, Toshio; Iino, Riichi (1970), "On the generalized Korteweg–De Vries equation", Proc. Japan Acad. 46 (9): 921–925, doi:10.3792/pja/1195520159
Original source: https://en.wikipedia.org/wiki/Generalized Korteweg–De Vries equation.
Read more |