Goodwin–Staton integral

From HandWiki

In mathematics the Goodwin–Staton integral is defined as :[1]

G(z)=0et2t+zdt

It satisfies the following third-order nonlinear differential equation:

4w(z)+8zddzw(z)+(2+2z2)d2dz2w(z)+zd3dz3w(z)=0

Properties

Symmetry:

G(z)=G(z)

Expansion for small z:

G(z)=1γln(z2)icsgn(iz2)π+2iπz+(2+γ+ln(z2)+icsgn(iz2)π)z24i3πz3+(5412γ12ln(z2)12icsgn(iz2)π)z4+O(z5)

References

  1. Frank William John Olver (ed.), N. M. Temme (Chapter contr.), NIST Handbook of Mathematical Functions, Chapter 7, p160,Cambridge University Press 2010