Gudkov's conjecture
From HandWiki
In real algebraic geometry, Gudkov's conjecture, also called Gudkov’s congruence, (named after Dmitry Gudkov) was a conjecture, and is now a theorem, which states that an M-curve of even degree [math]\displaystyle{ 2d }[/math] obeys the congruence
- [math]\displaystyle{ p - n \equiv d^2\, (\!\bmod 8), }[/math]
where [math]\displaystyle{ p }[/math] is the number of positive ovals and [math]\displaystyle{ n }[/math] the number of negative ovals of the M-curve. (Here, the term M-curve stands for "maximal curve"; it means a smooth algebraic curve over the reals whose genus is [math]\displaystyle{ k-1 }[/math], where [math]\displaystyle{ k }[/math] is the number of maximal components of the curve.[1])
The theorem was proved by the combined works of Vladimir Arnold and Vladimir Rokhlin.[2][3][4]
See also
References
- ↑ Arnold, Vladimir I. (2013). Real Algebraic Geometry. Springer. p. 95. ISBN 978-3-642-36243-9. https://books.google.com/books?id=xchAAAAAQBAJ&pg=PA95.
- ↑ Sharpe, Richard W. (1975), "On the ovals of even-degree plane curves", Michigan Mathematical Journal 22 (3): 285–288 (1976), http://projecteuclid.org/euclid.mmj/1029001529
- ↑ "Tribute to Vladimir Arnold", Notices of the American Mathematical Society 59 (3): 378–399, 2012, doi:10.1090/noti810
- ↑ Degtyarev, Alexander I.; Kharlamov, Viatcheslav M. (2000), "Topological properties of real algebraic varieties: du côté de chez Rokhlin", Uspekhi Matematicheskikh Nauk 55 (4(334)): 129–212, doi:10.1070/rm2000v055n04ABEH000315, Bibcode: 2000RuMaS..55..735D, http://www.fen.bilkent.edu.tr/~degt/papers/rokh.pdf
Original source: https://en.wikipedia.org/wiki/Gudkov's conjecture.
Read more |