h-vector

From HandWiki

In algebraic combinatorics, the h-vector of a simplicial polytope is a fundamental invariant of the polytope which encodes the number of faces of different dimensions and allows one to express the Dehn–Sommerville equations in a particularly simple form. A characterization of the set of h-vectors of simplicial polytopes was conjectured by Peter McMullen[1] and proved by Lou Billera and Carl W. Lee[2][3] and Richard StanleyCite error: Closing </ref> missing for <ref> tag

Flag h-vector and cd-index

A different generalization of the notions of f-vector and h-vector of a convex polytope has been extensively studied. Let [math]\displaystyle{ P }[/math] be a finite graded poset of rank n, so that each maximal chain in [math]\displaystyle{ P }[/math] has length n. For any [math]\displaystyle{ S }[/math], a subset of [math]\displaystyle{ \left\{0, \ldots, n\right\} }[/math], let [math]\displaystyle{ \alpha_P(S) }[/math] denote the number of chains in [math]\displaystyle{ P }[/math] whose ranks constitute the set [math]\displaystyle{ S }[/math]. More formally, let

[math]\displaystyle{ rk: P\to\{0,1,\ldots,n\} }[/math]

be the rank function of [math]\displaystyle{ P }[/math] and let [math]\displaystyle{ P_S }[/math] be the [math]\displaystyle{ S }[/math]-rank selected subposet, which consists of the elements from [math]\displaystyle{ P }[/math] whose rank is in [math]\displaystyle{ S }[/math]:

[math]\displaystyle{ P_S=\{x\in P: rk(x)\in S\}. }[/math]

Then [math]\displaystyle{ \alpha_P(S) }[/math] is the number of the maximal chains in [math]\displaystyle{ P_S }[/math] and the function

[math]\displaystyle{ S \mapsto \alpha_P(S) }[/math]

is called the flag f-vector of P. The function

[math]\displaystyle{ S \mapsto \beta_P(S), \quad \beta_P(S) = \sum_{T \subseteq S} (-1)^{|S|-|T|} \alpha_P(S) }[/math]

is called the flag h-vector of [math]\displaystyle{ P }[/math]. By the inclusion–exclusion principle,

[math]\displaystyle{ \alpha_P(S) = \sum_{T\subseteq S}\beta_P(T). }[/math]

The flag f- and h-vectors of [math]\displaystyle{ P }[/math] refine the ordinary f- and h-vectors of its order complex [math]\displaystyle{ \Delta(P) }[/math]:[4]

[math]\displaystyle{ f_{i-1}(\Delta(P)) = \sum_{|S|=i} \alpha_P(S), \quad h_{i}(\Delta(P)) = \sum_{|S|=i} \beta_P(S). }[/math]

The flag h-vector of [math]\displaystyle{ P }[/math] can be displayed via a polynomial in noncommutative variables a and b. For any subset [math]\displaystyle{ S }[/math] of {1,…,n}, define the corresponding monomial in a and b,

[math]\displaystyle{ u_S = u_1 \cdots u_n, \quad u_i=a \text{ for } i\notin S, u_i=b \text{ for } i\in S. }[/math]

Then the noncommutative generating function for the flag h-vector of P is defined by

[math]\displaystyle{ \Psi_P(a,b) = \sum_{S} \beta_P(S) u_{S}. }[/math]

From the relation between αP(S) and βP(S), the noncommutative generating function for the flag f-vector of P is

[math]\displaystyle{ \Psi_P(a,a+b) = \sum_{S} \alpha_P(S) u_{S}. }[/math]

Margaret Bayer and Louis Billera determined the most general linear relations that hold between the components of the flag h-vector of an Eulerian poset P.[5]

Fine noted an elegant way to state these relations: there exists a noncommutative polynomial ΦP(c,d), called the cd-index of P, such that

[math]\displaystyle{ \Psi_P(a,b) = \Phi_P(a+b, ab+ba). }[/math]

Stanley proved that all coefficients of the cd-index of the boundary complex of a convex polytope are non-negative. He conjectured that this positivity phenomenon persists for a more general class of Eulerian posets that Stanley calls Gorenstein* complexes and which includes simplicial spheres and complete fans. This conjecture was proved by Kalle Karu.[6] The combinatorial meaning of these non-negative coefficients (an answer to the question "what do they count?") remains unclear.

References

  1. "The numbers of faces of simplicial polytopes", Israel Journal of Mathematics 9 (4): 559–570, 1971, doi:10.1007/BF02771471 .
  2. "Sufficiency of McMullen's conditions for f-vectors of simplicial polytopes", Bulletin of the American Mathematical Society 2 (1): 181–185, 1980, doi:10.1090/s0273-0979-1980-14712-6 .
  3. "A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial convex polytopes", Journal of Combinatorial Theory, Series A 31 (3): 237–255, 1981, doi:10.1016/0097-3165(81)90058-3 .
  4. Stanley, Richard (1979), "Balanced Cohen-Macaulay Complexes", Transactions of the American Mathematical Society 249 (1): 139–157, doi:10.2307/1998915 .
  5. Bayer, Margaret M. and Billera, Louis J (1985), "Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets", Inventiones Mathematicae 79: 143-158. doi:10.1007/BF01388660.
  6. Karu, Kalle (2006), "The cd-index of fans and posets", Compositio Mathematica 142 (3): 701–718, doi:10.1112/S0010437X06001928 .

Further reading