H square
In mathematics and control theory, H2, or H-square is a Hardy space with square norm. It is a subspace of L2 space, and is thus a Hilbert space. In particular, it is a reproducing kernel Hilbert space.
On the unit circle
In general, elements of L2 on the unit circle are given by
- [math]\displaystyle{ \sum_{n=-\infty}^\infty a_n e^{in\varphi} }[/math]
whereas elements of H2 are given by
- [math]\displaystyle{ \sum_{n=0}^\infty a_n e^{in\varphi}. }[/math]
The projection from L2 to H2 (by setting an = 0 when n < 0) is orthogonal.
On the half-plane
The Laplace transform [math]\displaystyle{ \mathcal{L} }[/math] given by
- [math]\displaystyle{ [\mathcal{L}f](s)=\int_0^\infty e^{-st}f(t)dt }[/math]
can be understood as a linear operator
- [math]\displaystyle{ \mathcal{L}:L^2(0,\infty)\to H^2\left(\mathbb{C}^+\right) }[/math]
where [math]\displaystyle{ L^2(0,\infty) }[/math] is the set of square-integrable functions on the positive real number line, and [math]\displaystyle{ \mathbb{C}^+ }[/math] is the right half of the complex plane. It is more; it is an isomorphism, in that it is invertible, and it isometric, in that it satisfies
- [math]\displaystyle{ \|\mathcal{L}f\|_{H^2} = \sqrt{2\pi} \|f\|_{L^2}. }[/math]
The Laplace transform is "half" of a Fourier transform; from the decomposition
- [math]\displaystyle{ L^2(\mathbb{R})=L^2(-\infty,0) \oplus L^2(0,\infty) }[/math]
one then obtains an orthogonal decomposition of [math]\displaystyle{ L^2(\mathbb{R}) }[/math] into two Hardy spaces
- [math]\displaystyle{ L^2(\mathbb{R})= H^2\left(\mathbb{C}^-\right) \oplus H^2\left(\mathbb{C}^+\right). }[/math]
This is essentially the Paley-Wiener theorem.
See also
- H∞
References
- Jonathan R. Partington, "Linear Operators and Linear Systems, An Analytical Approach to Control Theory", London Mathematical Society Student Texts 60, (2004) Cambridge University Press, ISBN 0-521-54619-2.
Original source: https://en.wikipedia.org/wiki/H square.
Read more |