Half-exponential function

From HandWiki

In mathematics, a half-exponential function is a functional square root of an exponential function. That is, a function [math]\displaystyle{ f }[/math] such that [math]\displaystyle{ f }[/math] composed with itself results in an exponential function:[1][2] [math]\displaystyle{ f\bigl(f(x)\bigr) = ab^x, }[/math] for some constants [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math].

Impossibility of a closed-form formula

If a function [math]\displaystyle{ f }[/math] is defined using the standard arithmetic operations, exponentials, logarithms, and real-valued constants, then [math]\displaystyle{ f\bigl(f(x)\bigr) }[/math] is either subexponential or superexponential.[3] Thus, a Hardy L-function cannot be half-exponential.

Construction

Any exponential function can be written as the self-composition [math]\displaystyle{ f(f(x)) }[/math] for infinitely many possible choices of [math]\displaystyle{ f }[/math]. In particular, for every [math]\displaystyle{ A }[/math] in the open interval [math]\displaystyle{ (0,1) }[/math] and for every continuous strictly increasing function [math]\displaystyle{ g }[/math] from [math]\displaystyle{ [0,A] }[/math] onto [math]\displaystyle{ [A,1] }[/math], there is an extension of this function to a continuous strictly increasing function [math]\displaystyle{ f }[/math] on the real numbers such that [math]\displaystyle{ f\bigl(f(x)\bigr)=\exp x }[/math].[4] The function [math]\displaystyle{ f }[/math] is the unique solution to the functional equation [math]\displaystyle{ f (x) = \begin{cases} g (x) & \mbox{if } x \in [0,A], \\ \exp g^{-1} (x) & \mbox{if } x \in (A,1], \\ \exp f ( \ln x) & \mbox{if } x \in (1,\infty), \\ \ln f ( \exp x) & \mbox{if } x \in (-\infty,0). \\ \end{cases} }[/math]

Example of a half-exponential function

A simple example, which leads to [math]\displaystyle{ f }[/math] having a continuous first derivative everywhere, is to take [math]\displaystyle{ A=\tfrac12 }[/math] and [math]\displaystyle{ g(x)=x+\tfrac12 }[/math], giving [math]\displaystyle{ f (x) = \begin{cases} \log_e\left(e^x +\tfrac12\right) & \mbox{if } x \le -\log_e 2, \\ e^x - \tfrac12 & \mbox{if } {-\log_e 2} \le x \le 0, \\ x +\tfrac12 & \mbox{if } 0 \le x \le \tfrac12, \\ e^{x-1/2} & \mbox{if } \tfrac12 \le x \le 1 , \\ x \sqrt{e} & \mbox{if } 1 \le x \le \sqrt{e} , \\ e^{x / \sqrt{e}} & \mbox{if } \sqrt{e} \le x \le e , \\ x^{\sqrt{e}} & \mbox{if } e \le x \le e^{\sqrt{e}} , \\ e^{x^{1/\sqrt{e}}} & \mbox{if } e^{\sqrt{e}} \le x \le e^e , \ldots\\ \end{cases} }[/math]

Application

Half-exponential functions are used in computational complexity theory for growth rates "intermediate" between polynomial and exponential.[2] A function [math]\displaystyle{ f }[/math] grows at least as quickly as some half-exponential function (its composition with itself grows exponentially) if it is non-decreasing and [math]\displaystyle{ f^{-1}(x^C)=o(\log x) }[/math], for every [math]\displaystyle{ C\gt 0 }[/math].[5]

See also

References

  1. "Reelle analytische Lösungen der Gleichung φ(φ(x) = ex und verwandter Funktionalgleichungen". Journal für die reine und angewandte Mathematik 187: 56–67. 1950. https://gdz.sub.uni-goettingen.de/id/PPN243919689_0187?tify%3D%7B%22pages%22%3A%5B62%5D%7D. 
  2. 2.0 2.1 Miltersen, Peter Bro; Vinodchandran, N. V.; Watanabe, Osamu (1999). "Computing and Combinatorics, 5th Annual International Conference, COCOON '99, Tokyo, Japan, July 26–28, 1999, Proceedings". in Asano, Takao; Imai, Hiroshi; Lee, D. T. et al.. 1627. Springer. pp. 210–220. doi:10.1007/3-540-48686-0_21. 
  3. van der Hoeven, J. (2006). Transseries and real differential algebra. Lecture Notes in Mathematics. 1888. Springer-Verlag, Berlin. doi:10.1007/3-540-35590-1. ISBN 978-3-540-35590-8.  See exercise 4.10, p. 91, according to which every such function has a comparable growth rate to an exponential or logarithmic function iterated an integer number of times, rather than the half-integer that would be required for a half-exponential function.
  4. Crone, Lawrence J.; Neuendorffer, Arthur C. (1988). "Functional powers near a fixed point". Journal of Mathematical Analysis and Applications 132 (2): 520–529. doi:10.1016/0022-247X(88)90080-7. 
  5. "Natural proofs". Journal of Computer and System Sciences 55 (1): 24–35. 1997. doi:10.1006/jcss.1997.1494. 

External links