Hasse–Arf theorem
In mathematics, specifically in local class field theory, the Hasse–Arf theorem is a result concerning jumps of the upper numbering filtration of the Galois group of a finite Galois extension. A special case of it when the residue fields are finite was originally proved by Helmut Hasse,[1][2] and the general result was proved by Cahit Arf.[3][4]
Statement
Higher ramification groups
The theorem deals with the upper numbered higher ramification groups of a finite abelian extension L/K. So assume L/K is a finite Galois extension, and that vK is a discrete normalised valuation of K, whose residue field has characteristic p > 0, and which admits a unique extension to L, say w. Denote by vL the associated normalised valuation ew of L and let [math]\displaystyle{ \scriptstyle{\mathcal{O}} }[/math] be the valuation ring of L under vL. Let L/K have Galois group G and define the s-th ramification group of L/K for any real s ≥ −1 by
- [math]\displaystyle{ G_s(L/K)=\{\sigma\in G\,:\,v_L(\sigma a-a)\geq s+1 \text{ for all }a\in\mathcal{O}\}. }[/math]
So, for example, G−1 is the Galois group G. To pass to the upper numbering one has to define the function ψL/K which in turn is the inverse of the function ηL/K defined by
- [math]\displaystyle{ \eta_{L/K}(s)=\int_0^s \frac{dx}{|G_0:G_x|}. }[/math]
The upper numbering of the ramification groups is then defined by Gt(L/K) = Gs(L/K) where s = ψL/K(t).
These higher ramification groups Gt(L/K) are defined for any real t ≥ −1, but since vL is a discrete valuation, the groups will change in discrete jumps and not continuously. Thus we say that t is a jump of the filtration {Gt(L/K) : t ≥ −1} if Gt(L/K) ≠ Gu(L/K) for any u > t. The Hasse–Arf theorem tells us the arithmetic nature of these jumps.
Statement of the theorem
With the above set up, the theorem states that the jumps of the filtration {Gt(L/K) : t ≥ −1} are all rational integers.[4][5]
Example
Suppose G is cyclic of order [math]\displaystyle{ p^n }[/math], [math]\displaystyle{ p }[/math] residue characteristic and [math]\displaystyle{ G(i) }[/math] be the subgroup of [math]\displaystyle{ G }[/math] of order [math]\displaystyle{ p^{n-i} }[/math]. The theorem says that there exist positive integers [math]\displaystyle{ i_0, i_1, ..., i_{n-1} }[/math] such that
- [math]\displaystyle{ G_0 = \cdots = G_{i_0} = G = G^0 = \cdots = G^{i_0} }[/math]
- [math]\displaystyle{ G_{i_0 + 1} = \cdots = G_{i_0 + p i_1} = G(1) = G^{i_0 + 1} = \cdots = G^{i_0 + i_1} }[/math]
- [math]\displaystyle{ G_{i_0 + p i_1 + 1} = \cdots = G_{i_0 + p i_1 + p^2 i_2} = G(2) = G^{i_0 + i_1 + 1} }[/math]
- ...
- [math]\displaystyle{ G_{i_0 + p i_1 + \cdots + p^{n-1}i_{n-1} + 1} = 1 = G^{i_0 + \cdots + i_{n-1} + 1}. }[/math][4]
Non-abelian extensions
For non-abelian extensions the jumps in the upper filtration need not be at integers. Serre gave an example of a totally ramified extension with Galois group the quaternion group Q8 of order 8 with
- G0 = Q8
- G1 = Q8
- G2 = Z/2Z
- G3 = Z/2Z
- G4 = 1
The upper numbering then satisfies
- Gn = Q8 for n≤1
- Gn = Z/2Z for 1<n≤3/2
- Gn = 1 for 3/2<n
so has a jump at the non-integral value n=3/2.
Notes
- ↑ H. Hasse, Führer, Diskriminante und Verzweigunsgskörper relativ Abelscher Zahlkörper, J. Reine Angew. Math. 162 (1930), pp.169–184.
- ↑ H. Hasse, Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper, J. Fac. Sci. Tokyo 2 (1934), pp.477–498.
- ↑ Arf, C. (1939). "Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper" (in German). J. Reine Angew. Math. 181: 1–44.
- ↑ 4.0 4.1 4.2 Serre (1979) IV.3, p.76
- ↑ Neukirch (1999) Theorem 8.9, p.68
References
- Neukirch, Jürgen (1999). Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8.
- Serre, Jean-Pierre (1979), Local Fields, Graduate Texts in Mathematics, 67, Springer-Verlag, ISBN 0-387-90424-7
Original source: https://en.wikipedia.org/wiki/Hasse–Arf theorem.
Read more |