Hermite transform

From HandWiki

In mathematics, Hermite transform is an integral transform named after the mathematician Charles Hermite, which uses Hermite polynomials [math]\displaystyle{ H_n(x) }[/math] as kernels of the transform. This was first introduced by Lokenath Debnath in 1964.[1][2][3][4] The Hermite transform of a function [math]\displaystyle{ F(x) }[/math] is [math]\displaystyle{ H\{F(x)\} = f_H(n) = \int_{-\infty}^\infty e^{-x^2} \ H_n(x)\ F(x) \ dx }[/math]

The inverse Hermite transform is given by [math]\displaystyle{ H^{-1}\{f_H(n)\} = F(x) = \sum_{n=0}^\infty \frac{1}{\sqrt\pi 2^n n!} f_H(n) H_n(x) }[/math]

Some Hermite transform pairs

[math]\displaystyle{ F(x)\, }[/math] [math]\displaystyle{ f_H(n)\, }[/math]
[math]\displaystyle{ x^m }[/math] [math]\displaystyle{ \begin{cases} \frac{m!\sqrt{\pi} }{2^{m-n} \left(\frac{m-n}{2}\right)!}, & (m-n)\text{ even and} \geq0 \\ 0, & \text{otherwise} \end{cases} }[/math][5]
[math]\displaystyle{ e^{ax}\, }[/math] [math]\displaystyle{ \sqrt\pi a^n e^{a^2/4}\, }[/math]
[math]\displaystyle{ e^{2xt-t^2}, \ |t|\lt \frac{1}{2}\, }[/math] [math]\displaystyle{ \sqrt\pi (2t)^n }[/math]
[math]\displaystyle{ H_m(x)\, }[/math] [math]\displaystyle{ \sqrt\pi 2^n n!\delta_{nm}\, }[/math]
[math]\displaystyle{ x^2H_m(x)\, }[/math] [math]\displaystyle{ 2^n n! \sqrt{\pi}\begin{cases} 1 , & n=m+2 \\ \left(n+\frac{1}{2}\right), & n=m \\ (n+1)(n+2),& n=m-2 \\ 0, & \text{otherwise}\end{cases} }[/math]
[math]\displaystyle{ e^{-x^2}H_m(x)\, }[/math] [math]\displaystyle{ \left(-1\right)^{p-m} 2^{p-1/2} \Gamma(p+1/2),\ m+n=2p,\ p\in\mathbb{Z} }[/math]
[math]\displaystyle{ H_m^2(x)\, }[/math] [math]\displaystyle{ \begin{cases} 2^{m+n/2}\sqrt\pi \binom m{n/2}\frac{m!n!}{(n/2)!}, & n\text{ even and}\leq 2m \\ 0, & \text{otherwise} \end{cases} }[/math][6]
[math]\displaystyle{ H_m(x)H_p(x)\, }[/math] [math]\displaystyle{ \begin{cases} \frac{2^k\sqrt\pi m!n!p!}{(k-m)!(k-n)!(k-p)!} , & n+m+p=2k,\ k\in\mathbb{Z};\ |m-p|\leq n\leq m+p\\ 0 , & \text{otherwise} \end{cases}\, }[/math][7]
[math]\displaystyle{ H_{n+p+q}(x)H_p(x)H_q(x)\, }[/math] [math]\displaystyle{ \sqrt\pi 2^{n+p+q} (n+p+q)!\, }[/math]
[math]\displaystyle{ \frac{d^m}{dx^m}F(x)\, }[/math] [math]\displaystyle{ f_H(n+m)\, }[/math]
[math]\displaystyle{ x\frac{d^m}{dx^m}F(x)\, }[/math] [math]\displaystyle{ nf_H(n+m-1)+\frac{1}{2}f_H(n+m+1)\, }[/math]
[math]\displaystyle{ e^{x^2}\frac{d}{dx}\left[e^{-x^2}\frac{d}{dx}F(x)\right]\, }[/math] [math]\displaystyle{ -2nf_H(n)\, }[/math]
[math]\displaystyle{ F(x - x_0) }[/math] [math]\displaystyle{ \sqrt{\pi}\sum^\infty_{k=0}\frac{(-x_0)^k}{k!}f_H(n+k) }[/math]
[math]\displaystyle{ F(x)*G(x)\, }[/math] [math]\displaystyle{ \sqrt\pi(-1)^n\left[2^{2n+1}\Gamma \left(n+\frac{3}{2}\right)\right]^{-1}f_H(n) g_H(n)\, }[/math][8]
[math]\displaystyle{ e^{z^2} \sin(x z), \ |z|\lt \frac 12\ \, }[/math] [math]\displaystyle{ \begin{cases} \sqrt\pi (-1)^{\lfloor\frac{n}{2}\rfloor}(2z)^{n} , & n\,\mathrm{odd}\\ 0 , & n\,\mathrm{even} \end{cases}\, }[/math]
[math]\displaystyle{ (1-z^2)^{-1/2} \exp\left[\frac{2xyz-(x^2+y^2)z^2}{(1-z^2)}\right]\, }[/math] [math]\displaystyle{ \sqrt\pi z^n H_n(y) }[/math][9][10]
[math]\displaystyle{ \frac{H_m(y)H_{m+1}(x)-H_m(x)H_{m+1}(y)}{2^{m+1}m!(x-y)} }[/math] [math]\displaystyle{ \begin{cases}\sqrt{\pi}H_n(y) & n \leq m\\ 0 & n \gt m \end{cases} }[/math]

References

  1. Debnath, L. (1964). "On Hermite transform". Matematički Vesnik 1 (30): 285–292. 
  2. Debnath; Lokenath; Bhatta, Dambaru (2014). Integral transforms and their applications. CRC Press. ISBN 9781482223576. 
  3. Debnath, L. (1968). "Some operational properties of Hermite transform". Matematički Vesnik 5 (43): 29–36. 
  4. Dimovski, I. H.; Kalla, S. L. (1988). "Convolution for Hermite transforms". Math. Japonica 33: 345–351. 
  5. McCully, Joseph Courtney; Churchill, Ruel Vance (1953) (in en-US), Hermite and Laguerre integral transforms : preliminary report, http://deepblue.lib.umich.edu/handle/2027.42/6521 
  6. Feldheim, Ervin (1938). "Quelques nouvelles relations pour les polynomes d'Hermite" (in fr). Journal of the London Mathematical Society s1-13: 22–29. doi:10.1112/jlms/s1-13.1.22. 
  7. Bailey, W. N. (1939). "On Hermite polynomials and associated Legendre functions". Journal of the London Mathematical Society s1-14 (4): 281–286. doi:10.1112/jlms/s1-14.4.281. 
  8. Glaeske, Hans-Jürgen (1983). "On a convolution structure of a generalized Hermite transformation". Serdica Bulgariacae Mathematicae Publicationes 9 (2): 223–229. http://www.math.bas.bg/serdica/1983/1983-223-229.pdf. 
  9. Erdélyi et al. 1955, p. 194, 10.13 (22).
  10. Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" (in de), Journal für die Reine und Angewandte Mathematik (66): 161–176, ERAM 066.1720cj, ISSN 0075-4102, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002152975 . See p. 174, eq. (18) and p. 173, eq. (13).

Sources