Herz–Schur multiplier
From HandWiki
In the mathematical field of representation theory, a Herz–Schur multiplier (named after Carl S. Herz and Issai Schur) is a special kind of mapping from a group to the field of complex numbers.
Definition
Let Ψ be a mapping of a group G to the complex numbers. It is a Herz–Schur multiplier if the induced map Ψ: N(G) → N(G) is a completely positive map, where N(G) is the closure of the span M of the image of λ in B(ℓ 2(G)) with respect to the weak topology, λ is the left regular representation of G and Ψ is on M defined as
- [math]\displaystyle{ \Psi:~\sum\limits_{g\in G}\mu_g\lambda_g\mapsto\sum\limits_{g\in G}\psi(g)\mu_g\lambda_g. }[/math]
See also
- Figà-Talamanca–Herz algebra
- Fourier algebra
References
- Pisier, Gilles (1995), "Multipliers and lacunary sets in non-amenable groups", American Journal of Mathematics (The Johns Hopkins University Press) 117 (2): 337–376, doi:10.2307/2374918, ISSN 0002-9327
- Figà-Talamanca, Alessandro; Picardello, Massimo A. (1983), Harmonic analysis on free groups, Lecture Notes in Pure and Applied Mathematics, 87, New York: Marcel Dekker Inc., ISBN 978-0-8247-7042-6
- Carl S. Herz. Une généralisation de la notion de transformée de Fourier-Stieltjes. Annales de l'Institut Fourier, tome 24, no 3 (1974), p. 145-157.
Original source: https://en.wikipedia.org/wiki/Herz–Schur multiplier.
Read more |